

Bilkent University
Department of Computer Engineering

Senior Design Project

T2438
 Para-Meter

Analysis and Requirement Report

22003598, Abdullah Samed Uslu, samed.uslu@ug.bilkent.edu.tr

22102566, Tuna Saygın, tuna.saygin@ug.bilkent.edu.tr

22102825, Sıla Özel, sila.ozel@ug.bilkent.edu.tr

22002756, Muti Kara, muti.kara@ug.bilkent.edu.tr

Selim Aksoy

Mert Bıçakçı, Atakan Erdem

16.12.2024

This report is submitted to the Department of Computer Engineering of Bilkent University in

partial fulfilment of the requirements of the Senior Design Project course CS491/2.

mailto:samed.uslu@ug.bilkent.edu.tr
mailto:tuna.saygin@ug.bilkent.edu.tr
mailto:sila.ozel@ug.bilkent.edu.tr
mailto:muti.kara@ug.bilkent.edu.tr

Contents

1 Introduction... 3
2 Current System..3
3 Proposed System.. 4

3.1 Overview..4
3.2 Functional Requirements.. 4
3.3 Non-functional Requirements... 6
3.4 Pseudo Requirements..6
3.5 System Models... 7

3.5.1 Scenarios... 7
3.5.2 Use-Case Model...9
3.5.3 Object and Class Model.. 12
3.5.4 Dynamic Models.. 13

3.5.4.1 Activity Diagram for Custom Dataset Addition &
Preprocessing...13

3.5.5 User Interface...14
4 Other Analysis Elements.. 35

4.1 Consideration of Various Factors in Engineering Design........................ 35
4.1.1 Constraints...35

4.1.1.1 Implementation Constraints.. 35
4.1.1.2 Financial Constraints... 35
4.1.1.3 Ethical Constraints... 35
4.1.1.4 Public Health, Safety, and Welfare Factors.............................. 36
4.1.1.5 Global and Cultural Factors...36
4.1.1.6 Economic Factors...36

4.1.2 Standards... 38
4.2 Risks and Alternatives... 38

4.2.1 Data Inaccuracy and Quality Risks..38
4.2.3 Legal and Regulatory Risks... 39
4.2.4 Security Risks..40
4.2.5 User Adoption and Usability Risk..40

4.3 Project Plan...41
4.4 Ensuring Proper Teamwork...48
4.5 Ethics and Professional Responsibilities.. 49
4.6 Planning for New Knowledge and Learning Strategies............................ 49

4.6.1 Key Areas for New Knowledge...49
4.6.2 Learning Strategies... 50

5 Glossary... 51
6 References... 51

2

Analysis and Requirement Report
Para-Meter

1 Introduction

The financial market has seen a growing demand for accessible, data-driven
investment tools that enable users to optimize their portfolios with precision and
flexibility. While effective for institutional investors with specialized knowledge,
retail investors find traditional portfolio optimization solutions hard to use due to their
technical complexity, expensive costs, and reliance on conventional analysis
techniques.

Para-Meter is a machine learning-powered portfolio optimization tool designed to
bridge this gap. By integrating advanced data analysis, machine learning models, and
a simple yet intuitive interface, Para-Meter empowers users to easily optimize their
investment strategies, manage risk, and achieve their financial goals.

This report outlines the functional and non-functional requirements of Para-Meter,
key engineering considerations, identified risks and contingency plans, and a detailed
project roadmap. Additionally, it addresses constraints, ethical responsibilities, and
strategies for acquiring new knowledge and skills during the project.

This comprehensive document aims to ensure a shared understanding of the project’s
goals, deliverables, and methodology, paving the way for Para-Meter to revolutionize
portfolio optimization for retail investors.

2 Current System

The market has many portfolio optimization tools, but most of them don’t fully meet
the needs of modern investors. Institutional tools like BlackRock-Aladdin or
SimCorp-Axioma provide advanced features but are too expensive and complex for
most retail investors. On the other hand, retail-focused tools like Magnus or Talos
offer simpler solutions but lack flexibility, like adding custom datasets or customizing
algorithms.

Many existing tools rely on traditional financial models, such as mean-variance
optimization, which struggle to perform in today’s volatile and data-driven markets.
These models often fail to incorporate alternative data sources, such as
macroeconomic indicators, which are increasingly critical for accurate predictions.
Moreover, the widespread use of opaque “black-box” models erodes trust, as users
cannot understand how decisions are made.

3

Retail investors who face these issues often use manual methods, like spreadsheets or
basic tools, which don’t offer advanced analytics or machine learning features. This
creates inefficiency and limits their ability to optimize portfolios effectively.

Para-Meter solves these problems by combining affordability, advanced features, and
transparency. Unlike competitors, Para-Meter allows users to customize algorithms,
add their own datasets, train their own models, and still keep the interface simple and
easy to use. This makes it a flexible and accessible tool for retail investors, bridging
the gap between complex institutional tools and basic retail solutions.

3 Proposed System

3.1 Overview

The proposed system, Para-Meter, is a next-generation machine learning-based
portfolio optimization tool that aims to transform the way retail investors manage
their investments. The system provides users with dynamic, transparent, and
customizable portfolio recommendations by integrating advanced financial modeling
with support for alternative data sources. Its modular architecture enables adaptability
for both retail and institutional users, ensuring that powerful analytics remain
accessible and affordable.

Key highlights of the system include algorithmic portfolio optimization, robust risk
analysis, and real-time notifications—all delivered through a clean and user-friendly
interface. Unlike traditional tools, Para-Meter allows users to seamlessly integrate
custom datasets, select and compare machine learning models, and personalize
risk-return configurations to align with their individual goals. The platform also
prioritizes transparency, enabling users to understand how model decisions are made,
thus building trust and confidence in the tool.

3.2 Functional Requirements

User Features

● Users can create accounts, log in and manage profiles, store their preferences,
save portfolios, and select features.

● A dashboard provides real-time visualization of portfolio metrics, asset
allocations, and performance over time through graphs and charts.

● Users can compare different machine learning models side-by-side based on
performance metrics, accuracy, and historical returns before selecting a model
for portfolio optimization.

4

Customization

● Users can import alternative datasets (e.g., social sentiment, satellite data,
economic indicators) to enhance portfolio predictions.

● Users can create custom features from raw data or choose predefined features
like technical indicators, fundamental metrics, or sentiment scores.

● Users can choose from various machine learning models, including decision
trees, SVMs (Support Vector Machine), neural networks, and ensemble
methods.

● Users can set return goals, risk tolerance levels (using metrics like volatility
and VaR), and investment horizons.

● Users can configure portfolios as long-only or long-short, set net and gross
exposure limits, and manage leverage constraints.

Performance Analysis

● The platform uses cross-validation, out-of-sample testing, and rolling window
testing for robust model validation.

● Integrated stress testing and Monte Carlo simulations assess portfolio
performance under various market conditions.

● The platform provides detailed performance tracking, including metrics like
Sharpe ratio, drawdown, turnover, and sector or factor exposures.

Notification and Alert System

● Users can set notifications and alerts for specific events, such as portfolio
rebalancing thresholds, market movements, or changes in alternative data
sources (e.g., sentiment analysis).

Optimization and Maintenance

● Models update periodically to incorporate the latest market data, maintaining
relevance over time.

● The tool preprocesses data, including normalization and feature engineering,
to ensure high-quality input for models.

● Automated tuning methods (e.g., grid search and Bayesian optimization) are
available to optimize model performance.

5

3.3 Non-functional Requirements

Usability

● The tool should have an intuitive UI, accessible to non-technical users, with
easy-to-use options for model selection, customization, and analysis.

Reliability

● High availability to ensure consistent access and minimal downtime,
particularly for real-time portfolio updates and rebalancing.

● Robust security protocols to protect user data and ensure compliance with data
protection regulations.

Performance

● The platform should ensure low latency for portfolio rebalancing and
simulations using parallel computing techniques.

● Models and calculations should be optimized to minimize processing time
without sacrificing accuracy, even under heavy computational loads.

Supportability

● Modular code structure allows easier updates, model additions, and future
feature integration.

Scalability

● Support for portfolios of varying sizes, with efficient handling of large
datasets and concurrent requests.

● Support for large-scale data scraping and processing.

3.4 Pseudo Requirements

● The system will use cloud platforms like AWS, Azure, or Google Cloud for
accessibility and scalability.

● Python will be used for the backend due to its efficiency in machine learning
and data processing tasks. The frontend will use JavaScript frameworks like
React for an interactive and responsive user interface.

● Version control will be managed through GitHub, ensuring smooth
collaboration and code management.

● Docker will be used for creating containers to ensure consistent system
performance across different machines.

● External APIs such as Yahoo Finance or Alpha Vantage will fetch financial
data, while users can also upload data in common formats like CSV or Excel.

● The system will be accessible through a web browser, eliminating the need for
installations and enabling ease of use.

6

3.5 System Models

3.5.1 Scenarios

Scenario 1: Adding a New Portfolio

● Use Case Name: Add a New Portfolio
● Actors: User
● Entry Condition: The user is logged into their account and clicks on the

“Add New Portfolio” option from the dashboard or menu.
● Exit Condition: The new portfolio is successfully saved, or the user cancels

the operation.
● Flow of Events:

○ The user selects “Add New Portfolio.”
○ The system prompts the user to enter details such as portfolio name,

investment amount, and risk tolerance.
○ The user fills in the details and clicks “Save.”
○ The system validates the inputs and saves the portfolio.
○ The dashboard updates to show the new portfolio.

Scenario 2: Optimizing an Existing Portfolio

● Use Case Name: Optimize Portfolio
● Actors: User
● Entry Condition: The user selects a portfolio from their list and chooses the

“Optimize Portfolio” option.
● Exit Condition: The optimized portfolio is displayed, or the user cancels the

operation.
● Flow of Events:

○ The user selects a portfolio and clicks “Optimize Portfolio.”
○ The system retrieves portfolio data and current market information.
○ The user selects optimization preferences (e.g., risk level, target

returns).
○ The system runs the optimization algorithm and displays the results.
○ The user chooses to apply the changes or cancel.

Scenario 3: Uploading Custom Data

● Use Case Name: Upload Alternative Data
● Actors: User
● Entry Condition: The user clicks on the “Upload Data” button on the

dashboard.
● Exit Condition: The uploaded data is successfully added to the system or the

user cancels the upload.
● Flow of Events:

○ The user clicks “Upload Data.”
○ The system prompts the user to select a file (e.g., CSV or JSON

format).
○ The user uploads the file and selects how the data should be used.
○ The system validates the file format and processes the data.

7

○ A confirmation message is displayed, and the data becomes available
for analysis.

Scenario 4: Receiving Portfolio Notifications

● Use Case Name: Receive Notifications
● Actors: User
● Entry Condition: A predefined condition for portfolio alerts is met (e.g., a

portfolio’s risk threshold is exceeded).
● Exit Condition: The user views or dismisses the notification.
● Flow of Events:

○ The system monitors portfolio performance in real-time.
○ A predefined condition, such as a drastic risk change in the portfolio,

triggers an alert.
○ The system sends a notification to the user (via email or in-app alert).
○ The user views the notification and decides to take action (e.g.,

rebalance the portfolio).

Scenario 5: Viewing Portfolio Performance Metrics

● Use Case Name: View Performance Metrics
● Actors: User
● Entry Condition: The user selects a portfolio and navigates to the

“Performance Metrics” section.
● Exit Condition: The performance metrics are displayed, or the user exits the

section.
● Flow of Events:

○ The user selects a portfolio from the dashboard.
○ The system retrieves historical and current performance data.
○ The system displays metrics such as Sharpe ratio, VaR, and drawdown

in a graphical format.
○ The user analyzes the data and makes informed decisions about the

portfolio.

8

3.5.2 Use-Case Model

Figure 1. Use Case Diagram.

Figure 1 represents our app's use case diagram to develop features in a high-level
design. The following groupings are done to explain the elements of the use case
diagram in a more detailed and organized way.

Actors

● Investor (Primary Actor): The user interacting with the system to perform
actions like creating models, viewing results, managing assets, and optimizing
portfolios.

● Server: Handles backend computations like volatility calculations, risk
assessments, and storing models.

● Databases:
○ Model DB: Stores trained models.
○ User DB: Stores user-specific information.
○ Dataset DB: Manages datasets for model training and backtesting.

9

Major Use Cases

Model Management:

The investor interacts with the system to create, view, and manage models:

● Create Algo Package: Allows users to define a new algorithmic model
package. It includes:

○ Select Models: Choose from existing models.
○ Select Customized Model: Customize model parameters.
○ Select Optimization Algorithm: Define the optimization method

(e.g., Mean Variance Optimization).
○ Select Mean Value Theorem Model: Use specific model frameworks.
○ Select Black-Litterman Model: Select Black-Litterman for asset

allocation.
● Train New Model: Executes the training process based on selected parameters

and datasets.

Data Management:

The investor manages datasets for backtesting, training, and model simulations:

● Set Dataset: Allows the user to prepare the data for model training. It
includes:

○ Load Custom Dataset: Upload user-defined data.
○ Use Existing Dataset: Select pre-existing datasets.
○ Retrieve Specific Time Range: Filter data by specific time periods.
○ Use Yahoo Finance Data: Fetch market data from Yahoo Finance.
○ Use Weather Dataset: Integrate external weather-related data.

● Update Dataset Daily:
Ensures the database updates automatically with the latest data.

Portfolio Management:

The investor manages and edits portfolios based on model outputs:

● View Portfolio: Allows users to view their portfolio's performance.
● Edit Portfolio: Enables modifications to the portfolio. It includes:

○ Add Asset to Portfolio: Add new assets.
○ Remove Asset from Portfolio: Remove existing assets.
○ Change Asset Weight: Adjust asset allocation.

Results Visualization:

The investor views model outputs, performance, and associated risks:

10

● View Backtesting Results: Display results from backtesting models using
historical data.

● View Stress Testing Results: Analyze how models perform under extreme
conditions.

● View Simulation Results: Visualize predictions generated by trained models.
● View Detailed Model Description: Provides an in-depth explanation of the

model, its parameters, and its use cases.
● View Profit/Loss or Inference Graph: Shows graphical performance metrics

(e.g., P&L over time).

Parameter Management

The investor sets and adjusts parameters to optimize model performance:

● Set Parameters: Configure hyperparameters and settings for models. It
includes:

○ Set Risk: Define risk levels for optimization.
○ Set Investment Time: Specify the duration for investments.
○ Parameter Out of Range Error: Warn users when parameters exceed

permissible limits.
○ Warn Infeasible Parameters: Notify users of invalid combinations.
○ Infeasible Param for Model Error: Indicate errors when parameters

fail model constraints.

Risk and Volatility Calculations

● Calculate Volatility: Computes the volatility of assets in the portfolio.
● Calculate the Risk of Each Asset: Calculates the risk level for each asset to

guide decisions.

Notifications and Terms

● Notify User That Optimization May Fail: Warn users about potential
optimization issues.

● Require Investment Terms: Ensure that users agree to investment-related
terms before proceeding.

● Require KVVK: Request user consent for data privacy and usage compliance.

11

3.5.3 Object and Class Model

Figure 2. Class Diagram.

The class diagram in Figure 2 depicts an overview of the entities and what
functionality is obtained in each class. Additionally, design patterns that we learned in
Object Oriented Software Engineering (CS 319) are used to reduce and manage
complexity and handle changes more efficiently. The following part of the section is
the list of the patterns used.

Strategy Pattern:

The Strategy Pattern allows for defining multiple algorithms or behaviors and
selecting one at runtime [1]. In the class diagram, MLAlgorithmStrategy and
OptimizationAlgorithm Strategy are used to dynamically change the different types of
algorithms.

Repository Pattern:

The Repository Pattern abstracts data access and provides a central interface for
CRUD (Create, Read, Update, Delete) operations [2]. This improves the separation of
concerns and simplifies the interaction with the database. The class diagram uses
Dataset Repository, Back Testing Repository, Notification Repository, Profile
Repository, ML Repository, User Repository, etc., as repository patterns.

12

3.5.4 Dynamic Models

3.5.4.1 Activity Diagram for Custom Dataset Addition & Preprocessing

Figure 3. Activity Diagram for custom dataset addition.

13

The activity diagram in Figure 3 is for custom dataset addition and feature selection of
the retrieved data from sources such as Yahoo Finance. Because there are lots of
different types and sizes of data, it is better to create an activity diagram.

3.5.5 User Interface

Figure 4. Registration Page.

The registration page allows new users to create accounts:

● Input Fields: Includes Full Name, Email, Password, and Confirm Password.
● Action Buttons: “Register” confirms the input, while “Cancel” exits the

registration process.
● Sign-in Link: Redirects existing users to the sign-in page in Figure 5.

14

Figure 5. Sign-in Page.

The sign-in page enables existing users to log into the platform:

● Input Fields: Email and Password fields for secure authentication.
● Forgot Password Link: Allows users to reset their password.
● Action Buttons: “Sign In” to proceed to the dashboard page in Figure 6 and

“Cancel” to exit.
● Register Link: Redirects new users to the registration page.

15

Figure 6. Dashboard.

16

The dashboard provides a high-level overview of portfolios and algorithm packages:

● Performance Graph: Displays asset trends over time.
● My Portfolios Section: Lists user portfolios with visual pie charts for asset

allocation.
● My Algorithm Packages: Shows custom and predefined algorithm packages

with percentage contributions.

Figure 7. Add New Portfolio Page.

17

Figure 8. Add New Portfolio Page when “Upload File” is chosen as the portfolio
import method.

This page enables users to create a new portfolio using the “Upload File” method:

● Portfolio Import Options: Upload portfolio details in supported formats like
CSV.

● Input Fields: Includes portfolio name and optional description for user clarity.
● Save and Cancel Buttons: Allow users to confirm or exit the process.

18

Figure 9. Add New Portfolio Page when the “Use Predefined Examples” option is
chosen as the portfolio import method.

Here, users can add new portfolios using predefined templates:

● Portfolio Import Method: Users select “Use Predefined Examples.”
● Templates: Offers options like Balanced Portfolio, Growth Portfolio, and

Income Portfolio.
● Input Fields: Similar to other methods with portfolio name and optional

description.

19

Figure 10. Add New Portfolio form when the “Enter Manually” option is chosen as
the portfolio import method.

This page allows users to add a portfolio manually:

● Portfolio Import Method: The “Enter Manually” option enables manual data
entry.

● Asset Entry Section: Users add individual assets by providing their name,
weight, and currency.

● Action Buttons: Green checkmark to confirm an asset entry, red cross to
cancel.

20

Figure 11. Add Algorithm Basket Page.

This page allows users to create and customize algorithm baskets:

● Algorithm Basket Name: Users define a name for the basket.
● Risk Preferences: Includes Conservative, Balanced, Aggressive, and Custom

options.
● Algorithm Selection: Users can choose from predefined options (e.g., SVM

Default, Neural Network Default) or custom algorithms.

21

Figure 12. The page that the user will have when they click on the “Add Compute
Unit” link on the menu bar.

This screen provides an overview of compute unit usage:

● Remaining Compute Units: Displays available compute units in real-time.
● Past Activities: Lists recent training activities, including algorithm type,

training duration, and compute unit usage.
● Add Compute Units Button: Redirects users to the page in Figure 13 to

purchase additional compute units.

22

Figure 13. Add Compute Unit Page.

23

Figure 14. Payment portion of the Add Compute Unit form.

This multi-step interface facilitates purchasing compute units:

1. Step 1: Input Desired Units - Users specify the number of units to purchase.

24

2. Step 2: Payment Summary - Displays a breakdown of the cost.
3. Step 3: Payment Form - Users input their credit card details to complete the

purchase.

Figure 15. Custom Algorithm Training Page - Algorithm Selection.

25

Figure 16. Custom Algorithm Training Page - Algorithm Selection - SVM.

26

Figure 17. Custom Algorithm Training Page - Algorithm Selection - Linear
Regression.

27

Figure 18. Custom Algorithm Training Page - Algorithm Selection - FFNN.

This step allows users to select an algorithm:

● Algorithm Options: Includes SVM, Linear Regression, FFNN, RNN, and
others.

● Algorithm Information: Provides details about the selected algorithm, such
as its purpose and working process.

28

Figure 19. Custom Algorithm Training Page - Hyperparameter Selection.

Users configure hyperparameters for training:

● Rolling Window & Prediction Time: Set the historical period and prediction
horizon.

● Neural Network Configuration: Adjust layers, activation functions, and
dimensions for hidden layers.

29

Figure 20. Custom Algorithm Training Page - Dataset Selection.

This step enables users to select datasets:

● Portfolio Selection: Dropdown menu to choose a relevant portfolio.
● Date Range Picker: Allows users to define the dataset timeframe.
● Dataset Partitioning: Slider for splitting data into training, testing, and

validation sets.

30

Figure 21. Custom Algorithm Training Page - Overview.

The final step displays a summary of the training configuration:

● Selected Datasets: Highlights chosen data sources like yFinance and
AccuWeather.

● Hyperparameter Summary: Lists algorithm configurations, including
activation functions and rolling windows.

● Training Estimation: Shows the estimated training time and compute unit
usage.

31

Figure 22. Optimize Portfolio Page.

This screenshot displays the "Optimize Portfolio" page of the Para-Meter. Users can
interact with the page to optimize their investment portfolios by selecting a portfolio
and an algorithm basket. The interface includes:

● Dropdown Fields:
○ Select a portfolio: Allows users to choose an existing portfolio from

their saved options.
○ Select an algorithm basket: Enables users to apply a predefined

algorithm or custom algorithms to optimize the selected portfolio.
● Navigation Panel: Located on the left, users can access key sections such as

"Add Algorithm Package," "Add Portfolio," "Balance Portfolio," and the main
"Dashboard."

● Top Panel: Displays compute unit usage in hours, user settings, and
notification icons.

The design prioritizes simplicity and usability, offering a clean layout that guides
users through the portfolio optimization process.

32

Figure 23. My Algorithms Page.

This page shows a repository of algorithms created or trained by the user:

● Algorithm List: Displays algorithms such as “Custom SVM” and “My Neural
Network.”

● Training Progress: Includes status bars for ongoing training processes.
● Hyperparameters and Results: Users can view algorithm-specific

configurations and backtest results.

33

Figure 24. View Portfolio Page for a single portfolio.

The "View Portfolio" page provides a detailed analysis of user portfolios:

● Asset Allocation Chart: A pie chart visualizes the distribution of assets like
META, TSLA, and AAPL.

● Asset Details Table: Displays asset-specific details, including current price,
quantity, and total value.

● Portfolio Performance and Risk Analysis: Shows metrics like Total Return,
Volatility, and Risk.

● Balance Portfolio Button: Allows users to rebalance their portfolio based on
current data.

34

4 Other Analysis Elements

4.1 Consideration of Various Factors in Engineering Design

4.1.1 Constraints

4.1.1.1 Implementation Constraints
● Accessing reliable and high-quality financial data is important for accurate

modeling and optimization. However, many financial APIs have rate limits or
limited historical data. Also, the data might be inaccurate or incomplete. These
might hinder the accuracy of the results.

● Training machine learning models and running optimization algorithms
require significant computational resources, including processing power and
memory. The lack of access to high-performance hardware, such as GPUs or
distributed computing systems, can slow down model training and testing,
particularly when working with large datasets or performing hyperparameter
tuning.

● The limited development timeline of 8 months can restrict the scope of
development and testing. This limited duration requires careful prioritization
of features and functionalities to ensure the delivery of a functional,
high-quality system within the allotted time.

4.1.1.2 Financial Constraints
● The development of a machine learning-based portfolio optimization tool

faces significant financial limitations. The initial budget for the project
restricts access to advanced cloud infrastructure and premium financial
datasets. Cloud services, which are essential for computation and storage,
incur substantial costs, especially when utilizing high-performance
configurations like GPUs or distributed systems. Similarly, high-quality
financial datasets, often critical for accurate modeling, can be expensive and
may exceed budgetary limits. These constraints could affect the accuracy and
speed of the system’s development.

● Operational costs are another concern, as the platform aims to remain
affordable for retail investors who are sensitive to pricing. Maintaining low
operational expenses is important to ensure the tool is accessible, which may
necessitate adopting a freemium or tiered pricing model. Cost-effective
development practices, such as using open-source tools and optimizing
resource usage, will be critical to staying within budget.

4.1.1.3 Ethical Constraints
● A primary ethical concern is user data privacy. Compliance with data

protection regulations such as GDPR (General Data Protection Regulation),
CCPA (California Consumer Privacy Act), and KVKK (Personal Data

35

Protection Law) is crucial since the tool handles sensitive financial and
personal information.

● Avoiding algorithmic bias is one of the most important ethical constraints for
Para-Meter. Machine learning models trained on financial data may
unintentionally favor certain asset classes, industries, or demographic groups,
leading to biased recommendations. Ensuring fairness in portfolio suggestions
requires diverse, high-quality training datasets, which can be hard to detect
and obtain.

4.1.1.4 Public Health, Safety, and Welfare Factors
● Impact Level: 3/10

Although the system does not have a direct impact on public health and safety,
it does contribute to broader welfare by empowering users to make informed
financial decisions.

● Financial Well-being: By enabling users to optimize their investment
portfolios and better manage risk, the system indirectly contributes to the
financial well-being of individuals. As people become more informed and
make smarter investment choices, it could improve their overall financial
security, supporting their long-term welfare.

● Accessibility to Financial Tools: By providing a user-friendly and affordable
tool, the system helps democratize access to financial optimization tools that
were previously only available to institutional investors. This can improve the
financial outcomes of individuals who might otherwise not have had access to
advanced investment strategies.

4.1.1.5 Global and Cultural Factors
● Impact Level: 4/10

Global and cultural factors play an important role in shaping how the system is
used across different regions and by diverse groups of investors.

● Market Accessibility: The system will focus on ensuring seamless access to
the most widely traded stocks across different regions. It must consider any
regional restrictions, such as access to foreign markets, to allow investors from
any region to build diversified portfolios without being limited to local stocks.

4.1.1.6 Economic Factors
● Impact Level: 10/10

The system must account for various economic considerations to ensure it is
accessible, efficient, and sustainable in the long term.

● Affordability for Retail Investors: The platform must remain affordable,
particularly for retail investors, who are typically sensitive to costs. This

36

necessitates a pricing model that balances feature availability with
affordability. A freemium or tiered pricing model would allow users to access
essential functionalities while offering premium features for more advanced
users or institutional clients.

● Operational Costs and Cloud Infrastructure: High-performance cloud
computing and financial data APIs are crucial for training machine learning
models and executing real-time optimization. However, using advanced cloud
infrastructure such as GPUs, distributed computing systems, and premium
data sources can significantly increase costs. The system must find a
cost-effective solution that balances computational needs with budgetary
constraints.

● Economic Sensitivity of Market Conditions: The platform must adjust its
models to reflect changing economic conditions, such as market volatility,
interest rates, and inflation. These economic factors can impact the
performance of investment portfolios and must be integrated into the system's
predictive models to ensure that portfolio optimizations remain relevant under
different economic climates.

Table 1. Factors that can affect analysis and design.

 Effect level Effect

Public health 0 N/A - The project has no direct impact
on public health.

Public safety 0 N/A - The project has no direct impact
on public safety.

Public welfare 3 The project indirectly contributes to
financial well-being by helping users

optimize their investments.

Global Factors 4 The project ensures accessibility to
global markets and compliance with

international regulations.

Cultural factors 0 N/A - The project has no direct impact
on cultural factors.

37

Social factors 5 The project democratizes access to
advanced investment tools, fostering

inclusivity and financial literacy.

Environmental factors 1 Minimal impact due to hosting
infrastructure and cloud service usage.

Economic factors 10 The project heavily focuses on
economic considerations, especially

affordability for retail investors.

4.1.2 Standards

● IEEE 830: For the requirements specification of this project, we will use
IEEE 830 standards.

● UML 2.5.1: For the UML diagrams like use case diagrams, activity diagrams,
and class diagrams, UML 2.5.1 will be used.

● OAuth2.0: We will use the industry-standard authentication protocol
OAuth2.0 to authenticate the users.

● ISO 27002: For security-related standards, we will use ISO standards to
comply with many regulations regarding data security.

4.2 Risks and Alternatives

4.2.1 Data Inaccuracy and Quality Risks

Risk: The accuracy of the stock market data used for portfolio optimization is critical
to the success of the system. Financial data sourced from external APIs or financial
data providers may be inaccurate, outdated, or incomplete, leading to poor investment
recommendations. Inaccurate data can arise due to issues such as incorrect pricing,
missing data points, or delays in updating market information. This could result in
suboptimal portfolio suggestions, misguiding users in making important financial
decisions.

Alternatives:

● Data Validation with Basic Checks: We can implement basic checks to
ensure the data is valid. For example, flag any stock prices listed as zero or
negative and identify missing or incomplete data. Missing data can be
removed or imputed using basic methods such as replacing it with the mean or
median.

38

● Utilizing Free or Open Data Sources: Initially, we can leverage publicly
available and reputable data sources, such as Yahoo Finance or Alpha Vantage.
Although these sources may have some limitations, they can still provide
sufficient quality data for the early stages of the project.

4.2.2 Computational Overhead

Risk: The use of machine learning algorithms and portfolio optimization techniques,
especially when processing large datasets or running huge simulations, requires
significant computational resources. These computational demands could result in
long processing times, affecting the responsiveness of the system.

Alternatives:

● Optimizing Code Efficiency: We can focus on writing optimized, efficient
code by using techniques such as vectorization or precomputing values to
avoid redundant calculations.

● Leveraging Free Cloud Computing Resources: We can tilize free-tier cloud
services, such as Google Cloud or AWS, which provide basic computational
resources at no cost to students. These services are suitable for running initial
tests and experiments.

4.2.3 Legal and Regulatory Risks

Risk: Para-Meter deals with sensitive financial data, and there may be legal and
regulatory requirements around data privacy, financial recommendations, and
investment advice. Laws such as the GDPR (General Data Protection Regulation),
CCPA (California Consumer Privacy Act), and specific financial regulations across
different regions may apply. Non-compliance with these regulations could expose us
to significant legal liabilities and reputational damage.

Alternatives:

● Simplifying Data Collection: We can minimize the collection of sensitive
personal data. We can collect only the essential information required for the
tool to function, such as portfolio size and investment goals, and avoid storing
personally identifiable financial data.

● Disclaimers and Transparency: We can clearly state in the platform’s terms
of service that the tool provides suggestions only and is not responsible for
making actual investment decisions. This will help reduce the risk of legal
liability.

39

4.2.4 Security Risks

Risk: Para-Meter stores sensitive personal and financial information, making it a
target for cyberattacks. Potential security vulnerabilities, such as unauthorized access,
data breaches, and cyber threats, could compromise user data.

Alternatives:

● Using Secure Local Databases: We can store user data in secure, local
databases such as SQLite or PostgreSQL.

4.2.5 User Adoption and Usability Risk

Risk: The complexity of machine learning-based portfolio optimization may deter
less experienced users from adopting the platform. A steep learning curve, technical
jargon, or an unintuitive user interface could limit the system’s reach to a broader
audience of retail investors.

Alternatives:

● Incorporating In-App Tutorials: We can add basic tooltips and step-by-step
guides to assist users in understanding how to use the platform effectively.

● Simplified Models: We can offer pre-configured portfolio templates (e.g.,
Balanced, Growth) for quick setup and gradually introduce advanced features
through progressive disclosure.

Table 2. Risks.

 Likelihood Effect on the project B Plan Summary

Data Inaccuracy
and Quality Risks

Likely This could lead to
suboptimal portfolio

suggestions, potentially
misleading users.

Implementing data
validation checks,
using open data

sources, and
implementing caching

for API rate limits.

40

Computational
Overhead

Moderate This may lead to long
processing times, especially

with large datasets,
affecting system
responsiveness.

Optimizing code
efficiency and using

free-tier cloud
computing resources.

Legal and
Regulatory Risks

Moderate Non-compliance with data
privacy and financial

regulations could lead to
legal liabilities.

Including legal
disclaimers and
simplifying data

collection.

Security Risks Low Data breaches or
unauthorized access could

compromise user data.

Using secure local
databases.

User Adoption
and Usability

Risks

Likely The complexity of the
platform could deter users,
limiting the system's reach
and adoption, especially for

retail investors.

Incorporating In-App
Tutorials

4.3 Project Plan

Table 3. List of work packages.

WP# Work package title Leader Members involved

WP1 System Design and
Architecture

Tuna Muti

WP2 Data Collection and
Preprocessing

Tuna Sıla

WP3 Machine Learning Model
Development

Muti Tuna

41

WP4 Learning and Developing
Financial Mathematical

Models

Samed Muti

WP5 User Interface and Frontend
Development

Sıla Tuna

WP6 Backend Development Muti Samed

WP7 Integration and Testing

Sıla Samed

WP8 Documentation and Final
Presentation

Samed Sıla

Table 4. Gantt Chart For Work Packages.
Project Conception
and Initiation

Sept.
2024

Oct.
2024

Nov.
2024

Dec.
2024

Jan.
2025

Feb.
2025

March
2025

Apr.
2025

May
2025

System Design and
Architecture

Data Collection and
Preprocessing

Machine Learning
Model Development

Learning and
Developing
Financial
Mathematical
Models

User Interface and
Frontend
Development

Backend
Development

Integration and
Testing

Documentation and
Final Presentation

42

WP 1: System Design and Architecture

Start date: 2 November 2024 End date: 10 February 2025

Leader: Tuna Members
involved:

Muti

Objectives: Creating a scalable and modular system design while adhering to
engineering standards.

Tasks:

Task 1.1: Design system architecture (frontend-backend communication, data
flow).

Task 1.2: Create UML diagrams:

Use-case diagrams for user scenarios.

Class diagrams for backend components.

Sequence diagrams for key workflows.

Task 1.3: Define API specifications for inter-module communication.

Task 1.4: Establish database schema design.

Task 1.5: Review the architecture for compliance with standards (UML 2.5.1, ISO
27002).

Deliverables

D1.1: System Architecture Diagram.

D1.2: UML Diagrams.

D1.3: Database Schema Design.

WP 2: Data Collection and Preprocessing

Start date: 2 November 2024 End date: 15 February 2025

Leader: Tuna Members
involved:

Sıla

43

Objectives: Setting up the data pipeline and ensuring clean, accurate, and reliable
input for ML models.

Tasks:

Task 2.1: Investigate and integrate external APIs (e.g., Yahoo Finance, Alpha
Vantage).

Task 2.2: Create a pipeline for data retrieval.

Task 2.3: Develop routines for data validation and cleaning.

● Handle missing data through imputation techniques.
● Detecting and removing outliers.

Task 2.4: Perform normalization (e.g., Min-Max scaling, Z-score normalization).

Task 2.5: Save cleaned datasets for further use and testing.

Deliverables

D2.1: Data Retrieval Pipeline.

D2.2: Cleaned and Processed Dataset.

WP 3: Machine Learning Model Development

Start date: 12 December 2024 End date: 31 March 2025

Leader: Muti Members
involved:

Tuna

Objectives: Training and validating machine learning models for portfolio
optimization.

Tasks:

Task 3.1: Research and select ML algorithms to implement (e.g., Random Forest,
Neural Networks, SVM).

Task 3.2: Implement initial versions of ML algorithms.

Task 3.4: Develop training scripts with GPU optimization.

Task 3.5: Perform validation using cross-validation and rolling window testing.

44

Task 3.6: Integrate ensemble methods for combining predictions.

Deliverables

D3.1: ML Model Implementations.

D3.2: Model Training and Performance Reports.

WP 4: Learning and Developing Financial Mathematical Models

Start date: 15 October 2024 End date: 15 March 20254

Leader: Samed Members
involved:

Muti

Objectives: Understanding and implementing financial mathematical models such
as risk-return optimization, Value at Risk (VaR), Sharpe ratio calculations, and
portfolio rebalancing strategies, ensuring alignment with modern financial
theories..

Tasks:

Task 4.1: Research fundamental financial theories and models:

● Study Markowitz’s Mean-Variance Optimization.
● Understand modern approaches to risk-adjusted returns like Sharpe and

Sortino Ratios.
● Explore portfolio rebalancing strategies and constraints.

Task 4.2: Identify practical applications in portfolio management:

● How these models are used in institutional portfolio tools.
● Application in both long-only and long-short portfolios.

Task 4.3: Learn mathematical and computational implementations:

● Develop formulas for portfolio variance and covariance.
● Implement Monte Carlo simulations for stress testing.
● Calculate VaR and Expected Shortfall using statistical methods.

Task 4.4: Implement foundational models as proof of concept:

● Build small-scale models to test risk-return optimizations.

45

● Compare these models with basic machine learning models to establish a
performance benchmark.

Task 4.5: Integrate financial models into the system’s pipeline:

● Combine financial mathematical models with machine learning outcomes
for hybrid optimization strategies.

Deliverables

D4.1: Summary Report on Financial Theories and Applications.

D4.2: Implemented Risk-Return and Portfolio Optimization Scripts.

D4.3: Hybrid Model Report (Comparison of ML and Mathematical Models).

WP 5: User Interface and Frontend Development

Start date: 1 December 2024 End date: 28 February 2025

Leader: Sıla Members
involved:

Tuna

Objectives: Developing an intuitive and accessible interface for users.

Tasks:

Task 5.1: Design UI wireframes and prototypes.

Task 5.2: Build core frontend components (React.js framework).

● Registration and login pages.
● Dashboard for portfolio visualization.
● Forms for data uploads and algorithm selection.

Task 5.3: Add visualization components (graphs, charts for metrics).

Task 5.4: Integrate the frontend with backend APIs.

Deliverables

D5.1: UI Wireframes and Mockups.

D5.2: Functional Frontend Components.

46

WP 6: Backend Development

Start date: 15 December 2024 End date: 31 March 2025

Leader: Muti Members
involved:

Samed

Objectives: Implementing backend services and APIs for seamless data and
model handling.

Tasks:

Task 6.1: Implement authentication and authorization (OAuth 2.0).

Task 6.2: Build profile and portfolio management APIs (CRUD operations).

Task 6.3: Create ML model inference and training endpoints.

Task 6.4: Optimize the backend for high performance and low latency.

Deliverables

D6.1: Functional Backend APIs.

D6.2: Backend Testing Reports.

WP 7: Integration and Testing

Start date: 1 April 2025 End date: 1 May 2025

Leader: Sıla Members
involved:

Samed

Objectives: Integrating system modules and ensuring seamless operation through
comprehensive testing.

Tasks:

Task 7.1: Integrate backend, frontend, and ML modules.

Task 7.2: Conduct unit, integration, and system testing.

Task 7.4: Debug and resolve identified issues.

47

Deliverables

D7.1: Test Results and Bug Fix Logs.

D7.2: Fully Integrated System.

WP 8: Documentation and Final Presentation

Start date: 1 May 2025 End date: TBA

Leader: Samed Members
involved:

Sıla

Objectives: Creating comprehensive documentation and present the project.

Tasks:

Task 8.1: Write user manual and technical documentation.

Task 8.2: Prepare final presentation slides.

Task 8.3: Conduct internal mock presentations for feedback.

Task 8.4: Deliver the final presentation to instructors.

Deliverables

D8.1: User Manual.

D8.2: Final Project Documentation.

D8.3: Presentation Slides.

4.4 Ensuring Proper Teamwork

● To establish proper teamwork, we decided to have stand-up meetings every
Monday at 17.30 or 18.00. If some of our teammates are unavailable that day,
we will try to find another day that suits everyone.

● At the end of each stand-up meeting, we decide on the task distribution for the
upcoming report or task.

● Utilized Jira for centralized task management/allocation.

48

● GitHub is used for version control. That way, we make sure that multiple
teammates can work on the code for both the backend and the frontend.

4.5 Ethics and Professional Responsibilities

● Transparency in model behavior is crucial for Para-Meter. Machine learning
algorithms often function as black boxes, which can deteriorate user trust. The
platform must include explainable AI techniques, allowing users to understand
how specific inputs, like financial indicators or alternative data, impact
portfolio recommendations. This transparency builds trust and ensures that
users can make informed decisions.

● Para-Meter must maintain impartiality to avoid conflicts of interest. For
instance, it should not prioritize certain assets or datasets due to partnerships
or financial incentives. Ensuring neutrality in data sourcing and
recommendation processes is crucial for maintaining user trust and meeting
professional standards.

● We acknowledge that the financial market is inherently unpredictable and
volatile. While Para-Meter leverages state-of-the-art techniques to provide
optimized portfolio suggestions, these recommendations are not guaranteed to
lead to financial gains. Therefore, it is essential to emphasize that the ultimate
responsibility for any financial decision lies with the user. Our application is
intended to serve as a decision-support tool, not a substitute for professional
financial advice. We explicitly disclaim any liability for financial losses
resulting from acting on recommendations provided by Para-Meter. The
performance of portfolios depends on numerous external factors, which are
beyond the scope of Para-Meter. Users agree to accept full responsibility for
their financial decisions by using it.

4.6 Planning for New Knowledge and Learning Strategies

Developing a comprehensive and innovative portfolio optimization tool like
Para-Meter requires acquiring and applying new knowledge and skills throughout the
project lifecycle. This section outlines the key areas where the team needs to expand
its expertise, the strategies for acquiring this knowledge, and how it will be applied to
the system.

4.6.1 Key Areas for New Knowledge

The project involves a multidisciplinary approach, which makes learning important in
the following domains:

● Machine Learning Algorithms:
○ Advanced techniques like ensemble learning, deep learning (e.g.,

feed-forward neural networks, LSTMs), and explainable AI (e.g.,
SHAP values).

49

○ Hyperparameter optimization methods such as grid search, random
search, and Bayesian optimization.

● Financial Mathematics:
○ Core financial models, including Markowitz’s Mean-Variance

Optimization, Value at Risk (VaR), Sharpe and Sortino Ratios, and
Monte Carlo simulations.

○ Understanding the principles of portfolio rebalancing and risk
management.

● Data Engineering and Preprocessing:
○ Handling large-scale financial datasets, dealing with missing or noisy

data, and preprocessing alternative datasets like sentiment analysis or
satellite data.

● Scalable Software Development:
○ Learning advanced backend technologies like containerization with

Docker, API design, and integration with scalable cloud platforms
(e.g., AWS, Azure, Google Cloud).

● User Experience and Interface Design:
○ Developing intuitive, responsive interfaces using modern frontend

frameworks like React.js.
○ Ensuring usability for non-technical retail investors through effective

visualizations and interactivity.
● Compliance and Security Standards:

○ Understanding GDPR, CCPA, and ISO 27002 for data protection and
secure handling of sensitive financial data.

4.6.2 Learning Strategies

We plan to acquire the necessary knowledge using a combination of approaches:

● Online Courses and Tutorials: Platforms such as Coursera, edX, and
YouTube for structured courses on machine learning, financial mathematics,
and scalable software development.

● Reading and Literature Review: We plan to use books and articles that are
stated in the Project Specification Document.

● Peer Learning and Knowledge Sharing: We can arrange weekly
knowledge-sharing sessions within the team to discuss progress and
challenges.

● Consulting with Experts: Seeking mentorship and feedback from our
supervisor Selim Aksoy, course instructors Mert Bıçakçı and Atakan Erdem,
and innovation expert Eren Biri for financial modeling, advanced machine
learning techniques, and software development.

50

https://parameter-project.github.io/T2438_Project_Specification_Document.pdf

5 Glossary

SVM: support vector machines

SVR: support vector regression

FFNN: feed-forward neural network

RNN: recurrent neural network

6 References

[1] “Strategy,” Refactoring.Guru. [Online]. Available:

https://refactoring.guru/design-patterns/strategy. [Accessed: 14-Dec-2024]

[2] GeeksforGeeks, “Repository design pattern,” GeeksforGeeks, 01-Nov-2024. [Online].

Available: https://www.geeksforgeeks.org/repository-design-pattern/. [Accessed:

14-Dec-2024]

51

	1Introduction
	2Current System
	3Proposed System
	3.1Overview
	3.2Functional Requirements
	3.3Non-functional Requirements
	3.4Pseudo Requirements
	3.5System Models
	3.5.1Scenarios
	3.5.2Use-Case Model
	3.5.3Object and Class Model
	3.5.4Dynamic Models
	3.5.4.1 Activity Diagram for Custom Dataset Addition & Preprocessing

	3.5.5User Interface

	4Other Analysis Elements
	4.1Consideration of Various Factors in Engineering Design
	4.1.1Constraints
	4.1.1.1Implementation Constraints
	4.1.1.2Financial Constraints
	4.1.1.3Ethical Constraints
	4.1.1.4Public Health, Safety, and Welfare Factors
	4.1.1.5Global and Cultural Factors
	4.1.1.6Economic Factors

	4.1.2Standards

	4.2Risks and Alternatives
	4.2.1Data Inaccuracy and Quality Risks
	4.2.3Legal and Regulatory Risks
	4.2.4Security Risks
	4.2.5User Adoption and Usability Risk

	4.3Project Plan
	4.4Ensuring Proper Teamwork
	4.5Ethics and Professional Responsibilities
	4.6Planning for New Knowledge and Learning Strategies
	4.6.1 Key Areas for New Knowledge
	4.6.2 Learning Strategies

	5Glossary
	6References

