

Bilkent University
 Department of Computer Engineering

 Senior Design Project

 T2438
 Para-Meter

 Final Report

22003598, Abdullah Samed Uslu, samed.uslu@ug.bilkent.edu.tr

22102566, Tuna Saygın, tuna.saygin@ug.bilkent.edu.tr

22102825, Sıla Özel, sila.ozel@ug.bilkent.edu.tr

22002756, Muti Kara, muti.kara@ug.bilkent.edu.tr

Selim Aksoy

Mert Bıçakçı, Atakan Erdem

02.05.2025

mailto:samed.uslu@ug.bilkent.edu.tr
mailto:tuna.saygin@ug.bilkent.edu.tr
mailto:sila.ozel@ug.bilkent.edu.tr
mailto:muti.kara@ug.bilkent.edu.tr

1. Introduction.. 3
1.1. Purpose of the System... 3
1.2. Design Goals... 3
1.3. Definitions, Acronyms, and Abbreviations...4
1.4. Overview.. 4

2. Requirements Details.. 5
2.1. Functional Requirements... 5
2.2. Non-Functional Requirements... 6

3. Final Architecture and Design Details... 7
3.1. System Architecture.. 7

3.1.1. High-Level Architecture.. 7
3.1.2 Monolithic Architecture..8
3.1.3 Component Interactions... 8
3.1.4 Technology Stack Overview..10
3.1.5 Authentication System.. 11

3.2. Backend Design..11
3.2.1 API Design and RESTful Endpoints...11
3.2.2 Asynchronous Processing Model... 12
3.2.3 Module Organization and Structure.. 13

3.3 Frontend Design...14
3.3.1. Component Hierarchy..14
3.3.2. State Management Approach..15

3.4. Architecture Diagrams..16
3.4.1. Subsystem Decomposition Diagram... 16
3.4.2. Use Case Diagram.. 17

4. Development/Implementation Details.. 18
4.1. Development Methodology.. 18

4.1.1. Development Tools...18
4.1.2. Development Workflow..18

4.2. Backend Implementation..19
4.2.1. FastAPI Application Implementation..19
4.2.2. Database Implementation..19
4.2.3. Authentication Implementation...19
4.2.4. Financial Data Processing...20
4.2.5 Machine Learning Models.. 20
4.2.6. Error Handling and Logging..21

4.3. Frontend Implementation... 21
4.3.1. React Application Setup.. 21
4.3.2. Component Implementation..21
4.3.3. State Management Implementation.. 22
4.3.4. Chart and Data Visualization Implementation... 22
4.3.5. Form Handling Implementation.. 23
4.3.6. Authentication Implementation...23

5. Test Cases and Results... 23

1

5.1. Functional Test Cases.. 24
5.2. Non-Functional Test Cases.. 42

6. Maintenance Plan and Details...49
7. Other Project Elements... 49

7.1. Consideration of Various Factors in Engineering Design...................................49
7.1.1. Constraints... 49

7.1.1.1. Implementation Constraints...49
7.1.1.2. Financial Constraints..50
7.1.1.3. Ethical Constraints..50
7.1.1.4. Public Health, Safety, and Welfare Factors...50
7.1.1.5. Global and Cultural Factors... 51
7.1.1.6. Economic Factors... 51

7.1.2. Standards..52
7.2. Ethics and Professional Responsibilities... 53

7.2.1. Ethical Responsibilities... 53
7.2.2. Professional Responsibilities... 54

7.3. Teamwork Details.. 54
7.3.1. Contributing and functioning effectively on the team to establish goals,
plan tasks, and meet objectives... 54
7.3.2. Helping create a collaborative and inclusive environment........................ 55
7.3.3. Taking a lead role and sharing leadership on the team..............................56
7.3.4. Meeting objectives... 56

7.4 New Knowledge Acquired and Applied..58
8. Conclusion and Future Work.. 60

8.1 Project Summary..60
8.2 Lessons Learned... 61
8.3 Future Work... 61

9. Glossary..63
10. References..64

2

1. Introduction
This section explains our project’s functionality, purpose, and goal, along with the
explanations and definitions of technical terms that will be used in the report.

1.1. Purpose of the System
The financial market has seen a growing demand for accessible, data-driven investment tools
that enable users to optimize their portfolios with precision and flexibility. While effective for
institutional investors with specialized knowledge, retail investors find traditional portfolio
optimization solutions hard to use due to their technical complexity, high costs, and reliance
on conventional analysis techniques.

Para-Meter is a machine learning-powered portfolio optimization tool designed to bridge this
gap. By integrating advanced data analysis, machine learning models, and a simple yet
intuitive interface, Para-Meter empowers users to easily optimize their investment strategies,
manage risk, and achieve their financial goals.

1.2. Design Goals
Our design goals are as follows:

Usability

● Para-Meter should have an intuitive UI that is accessible to non-technical users and
has easy-to-use options for model selection, customization, and analysis.

Reliability

● High availability to ensure consistent access and minimal downtime, particularly for
real-time portfolio updates and rebalancing.

● Robust security protocols to protect user data and ensure compliance with data
protection regulations.

Performance

● The system must be designed to deliver low-latency portfolio optimization and
simulations through efficient parallelization techniques. Performance optimization
extends to model training, backtesting, and real-time analytics to ensure responsive
user interactions even when processing large datasets or complex calculations.

Supportability

● Modular code structure allows easier updates, model additions, and future feature
integration.

3

Marketability

● Para-Meter must differentiate itself from competitors by combining advanced
machine learning capabilities with odd customization options and user accessibility.
The platform's ability to allow users to import alternative datasets and train custom
algorithms should create a unique value proposition in the market.

Flexibility

● The system should allow for extensive customization, enabling users to select from
various machine learning models, integrate alternative data sources, create custom
features, and define precise risk and return parameters according to their investment
strategy and goals.

1.3. Definitions, Acronyms, and Abbreviations

● AI: Artificial Intelligence
● API: Application Programming Interface
● CCPA: California Consumer Privacy Act
● GDPR: General Data Protection Regulation
● GPU: Graphics Processing Unit
● KVKK: Personal Data Protection Law (Turkish data protection regulation)
● ML: Machine Learning
● OAuth 2.0: Industry-standard protocol for authorization
● UI: User Interface
● UML: Unified Modeling Language

1.4. Overview
The Para-Meter system introduces a comprehensive portfolio optimization solution that
integrates machine learning capabilities with financial expertise to deliver personalized
investment strategies. The platform is built on a modular architecture that separates concerns
into distinct services for data retrieval, preprocessing, algorithm training, portfolio
optimization, and user interface components.

This report details the transformation of our analytical model into a functional system design.
It begins by outlining the high-level system architecture and describes the subsystem
decomposition, hardware/software mappings, and data management strategies. The report
then addresses integration aspects, including access control, control flow, and the handling of
boundary conditions.

Subsequent sections elaborate on comprehensive testing strategies—both functional and
non-functional—designed to validate system performance, security, stability, and reliability.

4

Additionally, we detail the incorporation of various engineering considerations such as public
health, safety, security, global, cultural, social, environmental, and economic factors. A
dedicated chapter on teamwork discusses individual contributions, collaborative practices,
and leadership sharing within the project team.

Overall, this introduction sets the stage for the detailed design and testing procedures that
follow, providing a clear roadmap for stakeholders to understand the purpose, structure, and
guiding principles behind Para-Meter.

2. Requirements Details

2.1. Functional Requirements

User Features

● Users can create accounts, log in, manage profiles, store their preferences, save
portfolios, and select features.

● A dashboard provides real-time visualization of portfolio metrics, asset allocations,
and performance over time through graphs and charts.

● Users can compare different machine learning models side-by-side based on
performance metrics, accuracy, and historical returns before selecting a model for
portfolio optimization.

Customization

● Users can import alternative datasets (e.g., social sentiment, satellite data, economic
indicators) to enhance portfolio predictions.

● Users can choose from various machine learning models, including decision trees,
SVMs (Support Vector Machine), neural networks, and ensemble methods.

● Users can set return goals, risk tolerance levels (using metrics like volatility and VaR),
and investment horizons.

● Users can configure portfolios as long-only or long-short, set net and gross exposure
limits, and manage leverage constraints.

Performance Analysis

● The platform uses cross-validation, out-of-sample testing, and rolling window testing
for robust model validation.

● Integrated stress testing and Monte Carlo simulations assess portfolio performance
under various market conditions.

● The platform provides detailed performance tracking, including metrics like Sharpe
ratio, drawdown, turnover, and sector or factor exposures.

Optimization and Maintenance

5

● Models update periodically to incorporate the latest market data, maintaining
relevance over time.

● The tool preprocesses data, including normalization and feature engineering, to ensure
high-quality input for models.

● Automated tuning methods (e.g., grid search and Bayesian optimization) are available
to optimize model performance.

2.2. Non-Functional Requirements

Usability

● The tool should have an intuitive UI, accessible to non-technical users, with
easy-to-use options for model selection, customization, and analysis.

Reliability

● High availability to ensure consistent access and minimal downtime, particularly for
real-time portfolio updates and rebalancing.

● Robust security protocols to protect user data and ensure compliance with data
protection regulations.

Performance

● The platform should ensure low latency for portfolio rebalancing and simulations.
● Models and calculations should be optimized to minimize processing time without

sacrificing accuracy, even under heavy computational loads.

Supportability

● Modular code structure allows easier updates, model additions, and future feature
integration.

Scalability

● Support for portfolios of varying sizes, with efficient handling of large datasets and
concurrent requests.

● Support for large-scale data scraping and processing.

6

3. Final Architecture and Design Details

3.1. System Architecture

3.1.1. High-Level Architecture

The main components of our architecture are:

Frontend Layer: This is what users see and interact with. We built it using React.js, which
helps us create a responsive and interactive user interface. Users can view their portfolios,
create new ones, and use different optimization strategies through this interface.

Backend Layer: This is the brain of our system. We used FastAPI to build a RESTful API
that handles all the business logic. The backend processes requests from the frontend, runs
portfolio optimization algorithms, manages user authentication, and communicates with the
database.

Database Layer: We store our data in TimescaleDB, which is a special type of PostgreSQL
database that's good at handling time-series data (like stock prices over time). It stores user
information, portfolio details, stock data, and model configurations. For processing large
files, we used dedicated folders and the filesystem.

7

External Data Sources: Our system gets stock price data from the Yahoo Finance API [1].
This gives us real-time and historical stock price information that we need for our portfolio
optimization algorithms.

3.1.2 Monolithic Architecture

Even though we didn't fully separate our backend into independent microservices, we
organized our code into modular components that act like microservices. This approach gives
us some benefits of microservices while keeping development simpler. Our backend is
divided into these main service areas:

Authentication Service: Handles user registration, login, token management, and admin
access control. It uses JWT (JSON Web Tokens) for secure authentication.

User Management Service: Manages user profiles, preferences.

Portfolio Service: Handles creation, retrieval, update, and deletion of user portfolios. It also
manages the stocks within each portfolio.

Stock Data Service: Fetches and caches stock data from external APIs like Yahoo Finance. It
provides historical price data needed for portfolio analysis.

Predictor Service: Contains all the portfolio optimization algorithms and strategies that
users can apply to their portfolios.

Backtesting Service: Allows users to test investment strategies against historical data to see
how they would have performed.

Model Training Service: Provides infrastructure for training machine learning models that
can be used in portfolio optimization.

These service components communicate with each other through function calls since they're
all part of the same FastAPI application. Specially Model Training Service, also uses async
pool listeners to keep track of changes in the database. In a future version, we could separate
them into true microservices if needed.

3.1.3 Component Interactions

The components of our system interact in specific ways to deliver the functionality users
need. Here are the key component interactions:

8

Authentication Flow:

● User enters login credentials in the React frontend
● Frontend sends credentials to the Authentication API endpoint
● Backend validates credentials and returns a JWT token
● Frontend stores the token and includes it in all future requests

Portfolio Management Flow:

● Frontend sends portfolio creation/update requests to Backend API
● Backend validates the request data and updates the database
● Database confirms changes
● Backend sends a success/failure response to Frontend

Stock Data Retrieval Flow:

● Backend requests stock data from the Yahoo Finance API
● External API returns stock price data
● Backend processes and stores data in TimescaleDB
● Frontend requests stock data from the Backend
● Backend queries the database and returns processed data to the Frontend

Portfolio Optimization Flow:

● User selects the optimization strategy in Frontend
● Frontend sends optimization request to Backend
● Backend runs the selected algorithm on the portfolio data
● The algorithm produces optimized portfolio weights
● Backend stores results and returns them to the Frontend
● Frontend displays optimization results to the user

Model Training Flow:

● The user configures model parameters in Frontend
● Frontend sends a training request to Backend
● Backend initiates the model training process
● Training progress is stored in the database
● Frontend polls for training status updates
● When complete, the model is stored for future use

For data persistence, all components interact with TimescaleDB through our Tortoise-ORM
models. This gives us a clean way to handle database operations.

9

3.1.4 Technology Stack Overview

We chose specific technologies for each part of our system based on our requirements and
team skills:

Frontend Technologies:

● React.js: We used React for our frontend because it lets us build a responsive
single-page application with reusable components. It's also what our team had the
most experience with.

● CSS: For styling our components, we used custom CSS. We organized our styles in
separate files for each component.

● React Router: This helped us handle navigation between different pages in our
application.

Backend Technologies:

● FastAPI: We chose FastAPI for our backend because it's fast, easy to use, and has
built-in support for async operations. It also generates API documentation
automatically [2].

● Python 3.10: Our backend is written in Python because it has great libraries for data
analysis and machine learning.

● Tortoise-ORM: This is an async ORM that works well with FastAPI and makes
database operations easier [3].

● JWT: We used JSON Web Tokens for user authentication because they're secure and
don't require server-side storage.

● NumPy and Pandas: These libraries helped us process financial data and implement
optimization algorithms.

● PyTorch: We used PyTorch to build and train our models. With ts utilization of
CUDA, it enabled us to utilize GPUs for heavy load processes like model training and
inference.

Database Technology:

● TimescaleDB: We chose TimescaleDB (a PostgreSQL extension) because it's
specially designed for time-series data like stock prices. It can efficiently handle large
volumes of timestamped data.

Deployment and Infrastructure:

● Docker: We containerized our application using Docker to make sure it works
consistently across different environments.

● Docker Compose: This helped us define and run multi-container Docker applications
easily.

10

3.1.5 Authentication System

Our authentication system is designed to be secure yet simple. Here's how it works:

Registration: Users register by providing their email, username, and password. Passwords
are hashed using bcrypt before being stored in the database.

Login: Users log in with their credentials. If valid, the server generates a JWT token
containing the user's ID and role.

Token Validation: For protected endpoints, the backend validates the token in the request
header. If the token is valid, the request is processed; otherwise, it returns a 401 Unauthorized
error.

Role-Based Access: Different user roles (regular user, admin) have different permissions.
For example, only admins can access certain management endpoints.

The JWT tokens have an expiration time, after which users need to refresh. This helps
maintain security while providing a good user experience.

3.2. Backend Design

3.2.1 API Design and RESTful Endpoints
Our backend API follows RESTful principles with a clear and consistent structure. We
organized our endpoints by resource type to make the API easy to understand and maintain.
The main endpoint groups in our application are:

1. Authentication Endpoints

● These handle user registration, login, and token management
● We implemented secure JWT-based authentication to protect user data
● Endpoints follow standard authentication patterns like login/register/logout

2. User Management Endpoints

● For managing user profiles and account settings
● Include permission checks to ensure users can only access their own data
● Admin-specific endpoints for user management

3. Stock and Portfolio Endpoints

● Endpoints for creating, viewing, updating, and deleting portfolios
● Stock data retrieval with filtering options
● Portfolio performance calculation endpoints

4. Predictor Endpoints

11

● For creating and managing portfolio optimization algorithms
● Running predictions on existing portfolios
● Storing and retrieving prediction results

5. Backtest Endpoints

● Testing investment strategies against historical data
● Parameter-based configuration for different backtest scenarios
● Results storage and comparison capabilities

6. Model Training Endpoints

● Creating and managing machine learning training requests
● Monitoring training status and progress
● Accessing training history and results

All our endpoints follow consistent patterns for request parameters, response formats, and
error handling. We use HTTP status codes appropriately (200 for success, 400 for bad
requests, 401 for unauthorized access, etc.) and structure our responses consistently using
Pydantic schemas.

3.2.2 Asynchronous Processing Model
The Para-Meter backend uses an asynchronous processing model to handle multiple requests
efficiently. This is especially important for operations that might take time, like retrieving
financial data or running complex algorithms. Key aspects of our async implementation:

Async Request Handling

● All API endpoints use FastAPI's async capabilities
● This allows the server to handle many simultaneous connections without blocking
● Improves overall system responsiveness and throughput

Async Database Operations

● We use Tortoise-ORM, which supports asynchronous database queries
● Database operations don't block the event loop
● Allows the server to process other requests while waiting for database results

Background Tasks

● Long-running operations like ML model training run in the background
● Users receive an immediate response while processing continues
● Status polling allows the frontend to track progress

12

Async Data Fetching

● Financial data retrieval happens asynchronously
● Multiple stock data requests can run in parallel
● Improves performance when loading portfolio data with many stocks

This asynchronous approach helps our system remain responsive even under heavy load or
when performing complex calculations. It also makes better use of server resources by not
blocking threads during I/O operations.

3.2.3 Module Organization and Structure
We organized our backend code into logical modules based on functionality. This
organization helps keep the code maintainable and makes it easier for team members to find
and work on specific parts. The main modules in our backend are:

Core Module

● Contains fundamental components used throughout the application
● Includes settings management, security utilities, and shared resources
● Houses the core functionality that other modules depend on

Models Module

● Defines the database models and relationships
● Includes models for users, stocks, portfolios, predictors, and training data
● Uses Tortoise-ORM to define model structure and relationships

Schema Module

● Contains Pydantic models for request and response validation
● Ensures data consistency between frontend and backend
● Provides automatic documentation for API endpoints

Routes Module

● Defines all API endpoints grouped by resource type
● Implements the business logic for each endpoint
● Handles authentication, validation, and response formatting

Finance Module

● Implements financial algorithms and data processing
● Handles stock data retrieval and transformation
● Contains portfolio optimization and backtesting functionality

13

Model Training Module

● Manages machine learning model training workflows
● Handles background processing for training jobs
● Implements model evaluation and storage
● Can in as separate workers to maximize hardware utilization and queueing.

This modular structure follows the principle of separation of concerns, making the codebase
easier to understand, test, and maintain. Each module has a clear responsibility, and
dependencies between modules are well-defined.

3.3 Frontend Design

3.3.1. Component Hierarchy
We designed our React frontend using a component-based architecture to promote reusability
and maintainability. Our component hierarchy is organized into several layers:

Application Container

● The top-level component that handles routing and provides the Context API providers
● Manages authentication state and routing protection

Layout Components

● Components that define the overall layout of pages
● Include navigation bar, sidebar menu, and page containers
● Ensure a consistent look and feel across the application

Page Components

● Represent full pages in the application, such as Dashboard, Portfolio View, and Model
Creation

● Compose smaller components to build complete interfaces
● Handle page-specific state and data fetching

Feature Components

● Specialized components for specific functionality
● Include charts for portfolio visualization, data tables for stock information
● Implement both technical and non-technical user interfaces for different user needs

Form Components

● Components for data input with built-in validation
● Range from simple inputs to complex multi-step forms

14

● Dynamic forms that adapt based on user selection

Graph Components & Infoboxes

● For comprehension of the forms, which are multi-step forms, we designed graphs to
make users understand what they are doing.

● Each field has a specific infoboxes that explain what the field is for non-technical
users and technical users who have less experience in machine learning.

This hierarchy allows us to maintain a clear organization of our user interface and supports
our goal of creating interfaces suitable for both technical and non-technical users. The
component design also ensures we can reuse common elements across different parts of the
application.

3.3.2. State Management Approach
For state management in our application, we designed a solution that aligns with React's
principles and our application's needs:

Authentication State

● Designed a Context API-based solution for application-wide authentication
● Provides login state, user information, and authentication tokens to all components
● Handles token expiration and logout functionality

Page-Level State

● Each page component manages its own state
● State includes UI state (like open/closed panels) and data state (like loaded portfolios)
● Uses React hooks for state management

Component State

● Individual components manage their internal state
● Form components track input values and validation state
● Chart components manage visual state, like selected data points

Custom Hooks

● Designed reusable hooks for common state patterns
● Data fetching hooks that handle loading, error states, and caching
● Form state hooks for complex form handling

This design avoids unnecessary complexity while providing enough state management
capability for our application. By using React's built-in state management features rather than
third-party libraries, we kept our architecture simpler and more maintainable.

15

3.4. Architecture Diagrams

3.4.1. Subsystem Decomposition Diagram

16

3.4.2. Use Case Diagram

17

4. Development/Implementation Details
This section discusses the development and implementation details of our application. We
will start by explaining our development methodology and will move on to the
implementation details of the frontend and backend of the application.

4.1. Development Methodology
For our Para-Meter project, we set up a development environment that allowed our team to
work efficiently both individually and together. We made sure everyone had the same setup to
avoid the "it works on my machine" problem.

4.1.1. Development Tools
We used these main tools for development:

Visual Studio Code: Our primary code editor because it has good support for both Python
and JavaScript. We shared a common set of extensions like Python, ESLint, and Prettier to
maintain consistent code formatting.

Cursor IDE: Our secondary code editor because it has really good support for LLM models
and AI code writing.

Claude Code: We used Claude Code Research Preview on several occasions for solving bugs
and implementing some modules.

Git and GitHub: For version control and code sharing. We created a shared repository with
proper branch protection rules to prevent accidental changes to the main branch.

Docker and Docker Compose: To create consistent development environments. This helped
us avoid dependency issues between team members with different operating systems.

Postman: For testing API endpoints before integrating them with the frontend.

Jira: For tracking the development and task management, we used Atlassian Jira as our
sprint manager.

4.1.2. Development Workflow
Our workflow followed these steps:

Local Development: Each developer worked on their assigned tasks in their local
environment. We used Docker to prevent environmental issues.

Code Review: At least one other team member reviewed the other's code.

18

Integration Testing: After merging to the main branch, we tested to make sure everything
still worked together.

End-to-End Testing: For the backend, we created a test_api_flow.py script to test our
complex user flows, such as simulating a user registering and logging followed by creating a
portfolio and requesting optimizations with backtest results.

Our development methodology was essential for maintaining productivity across the team
and ensuring consistent behavior across different deployment stages.

4.2. Backend Implementation

4.2.1. FastAPI Application Implementation
We built our backend using FastAPI, which helped us create a fast and reliable API with
automatic documentation. For the implementation, we followed a modular approach as
described in the architecture section.

Our main application file connects all the different parts together. We organized the
application using routers for different resource types (authentication, users, stocks, portfolios,
etc.), which kept our code organized and easy to maintain. We also added CORS middleware
to allow our frontend to communicate securely with the backend.

We used FastAPI's dependency injection system extensively, which allowed us to reuse
common functionality like authentication across different endpoints. This made our code
cleaner and more maintainable, while also making testing easier.

4.2.2. Database Implementation
For database operations, we implemented Tortoise-ORM to handle our interactions with
TimescaleDB. The database connection gets initialized when the application starts up, using
configuration settings from environment variables.

For the Model Training Module, we used Python’s asyncpg library to create our pool
listeners and used hand-crafted SQL queries for handling model training workers.

We developed several scripts to manage database migrations, which allowed us to update our
database schema as our application evolved during development. These migration scripts
were crucial for maintaining database consistency across different environments and between
team members.

4.2.3. Authentication Implementation
Our authentication system consists of several key components:

● A secure password handling system using bcrypt for hashing

19

● JWT token generation and verification for stateless authentication
● Authentication middleware to protect restricted endpoints

When users register, their passwords are securely hashed before storage. During login, we
verify the password and generate a JWT token that contains the user's ID and role. This token
is then used to authenticate subsequent requests.

We implemented proper security practices like:

● Storing only hashed passwords, never plaintext
● Setting appropriate token expiration times
● Validating user permissions for protected actions

4.2.4. Financial Data Processing
Efficient processing of financial data was one of our main challenges. We developed a
caching system to balance data freshness with performance:

● We first check our database for requested stock data
● If the data is missing or outdated, we fetch it from Yahoo Finance
● New data is stored in the database for future use
● External scripts update the data periodically

This approach significantly improved our application's performance and reduced the load on
external data sources.

4.2.5 Machine Learning Models
We implemented two main portfolio optimization strategies in our backend:

● Mean-Variance Optimization (Markowitz) [4]
● Black Litterman [5]

For the detailed implementations of these models, we developed a model management system
that handles the process from parameter input to model deployment. This system:

● Processes user-defined training parameters
● Allows users to customize model structures, such as using a custom MLP network for

predicting the expected return in the Markowitz model
● Creates a training job that runs in the background
● Updates the database with progress information
● Stores the trained model for later use

A significant challenge was managing long-running model training tasks without affecting
API responsiveness. We solved this by implementing a background worker system that
processes training requests asynchronously.

20

4.2.6. Error Handling and Logging
We implemented comprehensive error handling throughout our application:

● Custom exception handlers for different error types
● Structured error responses with clear messages
● Appropriate HTTP status codes for different situations
● Detailed logging for debugging and monitoring
● Testing scripts to ensure the robustness and correctness of user flows

This approach helped us identify and fix issues during development and will make future
maintenance easier.

Through our implementation process, we focused on creating clean, maintainable code with
good documentation. We used Python's type hints throughout the codebase to make it more
self-documenting and to catch potential errors early in the development process.

4.3. Frontend Implementation

4.3.1. React Application Setup
We implemented our frontend using React to create a single-page application. We chose
React because it allowed us to build reusable components and manage state efficiently across
our application. Our implementation started with a basic project structure using Vite as our
build tool, which provided faster development and better performance compared to other
tools.

When implementing the application, we focused on creating a clear separation between
different parts of our application:

● Pages for full-screen views like Dashboard, Portfolio View, and Model Creation
● Reusable components for common UI elements
● API integration for communication with our backend by using Axios
● Context providers for global state management

We implemented proper routing using React Router, which allowed users to navigate between
different sections of the application while maintaining state. We also added route protection
to ensure that users must be authenticated to access protected pages.

4.3.2. Component Implementation
We implemented our components using a functional approach with React hooks. For each
component, we focused on making it independent and reusable where possible. Some of our
key implementation decisions included:

21

● Creating specialized chart components that wrap around the Recharts library to
display portfolio data in a consistent way

● Building form components with built-in validation to ensure data quality
● Implementing table components for displaying financial data with features like

pagination and sorting
● Creating modal components for confirmation dialogs and multi-step forms

For example, in the portfolio view implementation, we created components that fetch
portfolio data and pass it to specialized visualization components. This separation made our
code more maintainable and testable.

We also implemented different UIs for technical and non-technical users. For technical users,
we built complex interfaces with detailed configuration options, while for non-technical
users, we implemented simplified interfaces with guided workflows and clear explanations.

4.3.3. State Management Implementation
We implemented state management using a combination of approaches based on the scope of
the state:

● For application-wide authentication state, we implemented a custom AuthContext
using React's Context API. This provider component handles:

○ Token storage and retrieval
○ Login and logout functions
○ Automatic token expiration

● For component-specific state, we used React's useState hook. For example, in form
components, we implemented state for form inputs, validation errors, and submission
status.

● For more complex states in specific features, we implemented custom hooks. For
example, we created hooks for portfolio data loading that handle loading states, error
handling, and data caching.

We chose not to implement a full state management library like Redux because our
application's state requirements weren't overly complex, and React's built-in state
management tools were sufficient for our needs.

4.3.4. Chart and Data Visualization Implementation
Financial data visualization was a critical part of our frontend implementation. We
implemented several types of visualizations:

● Portfolio allocation pie charts to show asset distribution
● Performance line graphs to display portfolio returns over time
● Comparison charts for backtesting results
● Stock price history charts with volume indicators

22

We implemented these visualizations using the Recharts library, which provided a good
balance between customization options and ease of use. For each chart type, we created
wrapper components that handle data formatting and styling to ensure consistent appearance
throughout the application. We paid special attention to making our charts responsive so they
work well on different screen sizes.

4.3.5. Form Handling Implementation
Form handling was implemented with several key features:

● Input validation with clear error messages
● Multi-step forms for complex workflows like model creation
● Dynamic form generation based on selected options
● File upload handling for CSV portfolio imports

For the technical user form, we implemented a complex form that dynamically changes based
on the selected algorithm. The form displays different parameters based on the chosen
algorithm type and provides helpful explanations for each parameter.

In the portfolio creation form, we implemented both manual asset entry and CSV file upload
options. For manual entry, we included validation to ensure weights add up to 100% and
provide immediate feedback to users.

4.3.6. Authentication Implementation
We implemented a secure authentication system in the frontend with these features:

● JWT token storage in browser session storage
● Automatic token validation and expiration handling
● Protected routes that redirect unauthenticated users to the login page
● Login/registration forms with validation

When a user logs in, our implementation stores the JWT token and includes it in all
subsequent API requests. We also implemented automatic logout when the token expires.

Through our frontend implementation, we focused on creating a user-friendly interface that
makes complex financial operations accessible while still providing powerful tools for
advanced users. We paid special attention to error handling, loading states, and validation to
ensure users always understand what's happening in the application.

5. Test Cases and Results
In this section, we will give a detailed explanation, steps, expected results, and test results of
the test cases we executed in our application.

23

5.1. Functional Test Cases

Test ID 1 Category Functional Severity Minor

Objective Verify the login functionality works

Expected The user successfully logs in if the username and password fields are
correct else; the login operation should fail and show the “Username and
password do not match.” message.

Steps Successful Login:

1. Navigate to the login page
2. Enter the username correctly
3. Enter the password correctly
4. Click on the log-in button and log in to the account.

Failed Login:

1. Enter the username or password incorrectly.
2. Click on the log-in button and get the correct error message.

Date-Result 30.04.2025 - Passed.

Test ID 2 Category Functional Severity Minor

Objective Verify that the user registration process works correctly.

Expected The user should be registered, and a verification email is sent to the user if
the username and password are valid. Otherwise, the operation fails if the
username is already taken, the password does not comply with the password
restrictions, and the “Username or password invalid” message is shown.

Steps Successful Registration:

24

1. Navigate to the registration page.
2. Enter a valid username, email address, and password.
3. Click on the "Register" button.
4. Check the email inbox for an activation email.
5. Click on the activation link to activate the account.

Failed Registration:

1. Navigate to the registration page
2. Enter an already-used username or an invalid password.
3. Check if the correct error message appears on the screen.

Date-Result 30.04.2025 - Passed.

Test ID 3 Category Functional Severity Minor

Objective Verify the forgot password functionality.

Expected When a valid email is provided, the system sends a password reset link to
the user’s registered email address, and the user successfully resets their
password.

Steps 1. Navigate to the login page and click on "Forgot Password."
2. Enter the registered email address.
3. Click on the "Submit" button.
4. Check the email inbox for a password reset link.
5. Click the reset link and set a new valid password.

Date-Result 30.04.2025 - Passed.

Test ID 4 Category Functional Severity Critical

Objective Verify that the unauthenticated users cannot access restricted pages via
URL.

25

Expected The user will be redirected to the login page upon unauthenticated access
trial with an error message.

Steps 1. Log out if you are logged in.
2. Clear the browser cache or open an incognito/private window to

ensure no cached tokens or session data are present.
3. Type the URL of a restricted page and hit enter.
4. Verify that the system automatically redirects to the login page with

the expected error message.

Date-Result 30.04.2025 - Passed.

Test ID 5 Category Functional Severity Medium

Objective Verify that the user can add a portfolio with valid input values.

Expected A new portfolio appears in the user's portfolio list when valid data is
provided.

Steps 1. Log in and navigate to the "Create Portfolio" section.
2. Enter a portfolio name and required parameters.
3. Click on the "Create Portfolio" button.
4. Verify that the new portfolio appears in the portfolio list.

Date-Result 30.04.2025 - Passed.

Test ID 6 Category Functional Severity Critical

Objective Verify that the user can update their portfolios.

Expected Changes made to the portfolio details are saved and correctly reflected in
the portfolio summary.

26

Steps 1. Log in and select an existing portfolio.
2. Click the "Edit Portfolio" button.
3. Modify portfolio parameters (e.g., name, asset allocation) with

proper values.
4. Click "Save Portfolio" and verify that the updated information is

displayed.

Date-Result 30.04.2025 - Passed.

Test ID 7 Category Functional Severity Major

Objective Verify that the user can delete their portfolios.

Expected The selected portfolio is permanently removed from the portfolio list after
confirmation.

Steps 1. Log in and navigate to the portfolio list.
2. Select a portfolio to delete.
3. Click the "Delete Portfolio" button and confirm the deletion when

prompted.
4. Verify that the portfolio no longer appears in the list.

Date-Result 30.04.2025 - Passed.

Test ID 8 Category Functional Severity Major

Objective Verify that the user can see their portfolios on the dashboard. Portfolio
Cards must be responsive to the different devices

Expected The user should see their portfolios in the “My Portfolios” section if they
have portfolio(s).

27

The portfolios must be adjusted to small, medium, and big-sized screens.

Steps 1. Navigate or be redirected to the dashboard page.
2. The system displays the dashboard with the “My Portfolios” section

visible.
3. Verify that the portfolio cards are correctly displayed within the “My

Portfolios” section.
4. Resize the browser window or use device emulation tools to

simulate small, medium, and large screen sizes.
5. Confirm that the portfolio cards adjust responsively and maintain

proper layout and usability across different devices.

Date-Result 30.04.2025 - Passed.

Test ID 9 Category Functional Severity Critical

Objective Verify that the users can upload their portfolio as a CSV file, given that it is
in the correct format.

Expected The upload should be successful if the file is in the correct format.
Otherwise, the user will see an error message, “The CSV file is in incorrect
format. Please upload a CSV file with expected columns.”

Steps 1. Navigate to the “Add Portfolio” page.
2. Fill out the necessary input fields.
3. Choose to export their portfolio via CSV file upload.
4. Click the submit button to validate that the portfolio appears in the

list with the correct values.

Date-Result 30.04.2025 - Passed.

Test ID 10 Category Functional Severity Critical

Objective Verify that the user can select from predefined machine-learning models for

28

portfolio optimization.

Expected The options should be chosen from the form, and no errors should occur
upon submission.

Steps 1. Navigate to the “Balance Portfolio” page and select the “Technical
User” option.

2. Select a model from the predefined options and fill out the form
with the correct inputs.

3. Click on the “Next” and verify the selected models.

Date-Result 30.04.2025 - Passed.

Test ID 11 Category Functional Severity Critical

Objective Verify that the users can upload a custom dataset to train their models with
their own data.

Expected The upload should be successful if the dataset is in the correct file format.
Otherwise, the system should show an error message.

Steps 1. Click on the “Balance Portfolio” button under the portfolio to
balance the portfolio.

2. Click on the “Technical User” option.
3. Choose among model options and click the next button.
4. In the “Select Dataset” part of the form, choose to use the custom

dataset option. A file input field will appear as the user chooses this
option.

5. Click the “Browse Files” button to choose a file to upload a custom
dataset.

6. Verify the uploading of the dataset from the preview.

Date-Result 30.04.2025 - Implementation not finished.

29

Test ID 12 Category Functional Severity Critical

Objective Verify that the system gives information about the progress of
machine-learning models that the user trains.

Expected The system should show an informative message on the status of the
training.

Steps 1. Click on the “Balance Portfolio” button under the portfolio to
balance the portfolio.

2. Select any type of user.
3. Continue to model training.
4. Verify the training status information is informative and valid.

Date-Result 04.05.2025 - Passed.

Test ID 13 Category Functional Severity Major

Objective Verify that the user can abort the training process before it is completed.

Expected If the abortion is successful, the user will be notified via notification.

If a failover happens during abortion (connection loss), the request must be
persisted until abortion successfully occurs. Compute units must be restored
accordingly.

Steps 1. Click on the “Balance Portfolio” button under the portfolio to
balance the portfolio.

2. Choose any type of user.
3. Proceed with the model training on the portfolio.
4. Before completing training, click on the “Abort Training” button on

the “Past Activities” page.
5. Validate the behavior of the abortion process and the amount of

compute units.

Date-Result 30.04.2025 - Implementation not finished.

30

Test ID 14 Category Functional Severity Minor

Objective Verify that the user cannot train a model if they do not have enough
compute units threshold for that workload.

Expected The user is notified that they don’t have enough training compute unit
threshold.

Steps 1. Log in with an account with fewer compute units than required for
the selected model workload.

2. Navigate to the “Balance Portfolio” page.
3. Select the technical knowledge level as a technical user and choose

custom models.
4. Check if the necessary compute units are higher than the account

holds.
5. Ensure the training process does not start and that the notification

appears on the notifications page.

Date-Result 30.04.2025 - Will not be implemented.

Test ID 15 Category Functional Severity Critical

Objective Verify that the system uses the selected model to optimize the portfolio of
the user.

Expected The assets' final weights and the selected models' backtesting results appear.

Steps 1. Click on the “Balance Portfolio” button under the portfolio to
balance the portfolio.

2. Select any type of user.
3. Continue with the training and optimization process.
4. Validate that the selected models’ results appear on the screen after

finishing the training process.

31

Date-Result 04.05.2025 - Passed.

Test ID 16 Category Functional Severity Major

Objective Verify that the users can download the optimization backtesting result as a
report.

Expected The user should download the optimization results report.

Results will consist of backtesting and will contain all metrics without
anything absent that is shown on the page.

Steps 1. Navigate to the Past Activities page.
2. Click on the backtesting report option.
3. The backtesting results are displayed on the screen.
4. Click on the “Download PDF” button.
5. The system downloads a PDF report containing all the displayed

backtesting metrics.

Date-Result 03.05.2025 - Implementation not finished.

Test ID 17 Category Functional Severity Critical

Objective Verify that the users can purchase compute units to train their models.

Expected Upon successful transaction, the compute unit quota should be increased by
the user's purchase amount.

Steps 1. Navigate to the purchase compute units page from the sidebar.
2. Enter the amount of compute units to purchase.
3. The total amount will be calculated, and the user will be charged

automatically according to the unit price.
4. Enter the debit/credit card details correctly.
5. Click the submit button to purchase, and the payment system will

redirect you to transaction approval.

32

6. Verify that the user is redirected to the application after approval and
that the compute units have increased accordingly.

Date-Result 30.04.2025 - Will not be implemented.

Test ID 18 Category Functional Severity Critical

Objective Verify that the users are charged correctly for the compute units they want.

Expected The amount of money taken from the user is the same as the calculated
amount for the compute units they purchase.

Steps 1. Navigate to the purchase compute units page from the sidebar.
2. Enter a valid amount of compute units.
3. The total amount will be calculated, and the user will be charged

automatically according to the unit price.
4. Enter the debit/credit card details.
5. Click on the submit button to purchase, and the payment system will

redirect you to transaction approval.
6. Check the bank account to verify the amount of money withdrawn.

Date-Result 30.04.2025 - Will not be implemented.

Test ID 19 Category Functional Severity Critical

Objective Verify that the users can see their purchase and usage history in detail.

Expected All activities related to consuming or purchasing compute units are listed on
the Past Activities page.

Steps 1. Apply training and purchase operations to spend or buy compute
units.

2. Record these operations.
3. Navigate to the “Past Activities” page from the sidebar menu.

33

4. View all past activities performed and verify that every consumption
and purchase of compute units is listed there.

Date-Result 30.04.2025 - Will not be implemented.

Test ID 20 Category Functional Severity Critical

Objective Verify that the user can update their portfolio upon the optimization
recommendations.

Expected The user's selected portfolio is updated according to the recommended
optimized portfolio.

Steps 1. Train a model/models to optimize the portfolio.
2. After completing the optimization process, click on the update

portfolio button to update the portfolio according to the
recommended portfolio.

3. Validate that the portfolio is rebalanced with the suggested asset
weights on the Dashboard page.

Date-Result 30.04.2025 - Implementation not finished.

Test ID 21 Category Functional Severity Critical

Objective Verify that the users receive a notification when the training job is finished.

Expected Receive a notification about the completed job.

Steps 1. Start training to optimize the portfolio.
2. Verify the related notification appears on the notifications page

when training is done.

Date-Result 30.04.2025 - Implementation not finished.

34

Test ID 22 Category Functional Severity Critical

Objective Verify that the user is not charged if the transaction for the compute unit
purchase fails. Also, the user is informed in case the transaction fails.

Expected Receive an error message about the failure, and the user will not be charged.

Steps 1. Navigate to the “Purchase Compute Unit” page.
2. Fill out the amount of compute units to be purchased with a valid

input.
3. Enter the wrong credentials, or the card with not enough account

balance.
4. Verify that no purchase is made and the error notification is sent to

the user.

Date-Result 30.04.2025 - Will not be implemented.

Test ID 23 Category Functional Severity Major

Objective Verify that the logout functionality works correctly.

Expected Logged-out accounts cannot access the restricted pages without logging in
again

Steps 1. Log in with valid credentials.
2. Click on the "Logout" button in the navigation bar.
3. Verify that the user is redirected to the login page with the message

“You have been logged out.” and that the user cannot access the
restricted pages.

35

Date-Result 30.04.2025 - Passed.

Test ID 24 Category Functional Severity Minor

Objective Verify that the homepage profit/loss plot is working correctly.

Expected The profit/loss plot only contains the current portfolios.

Steps 1. Create a new portfolio.
2. Validate it appears on the profit/loss plot.
3. Delete a portfolio.
4. Validate it disappears from the profit/loss graph.

Date-Result 30.04.2025 - Passed.

Test ID 25 Category Functional Severity Major

Objective Verify that adding a custom model addition makes the model usable.

Expected ● Step 3: Recently added models should be seen in the list of custom
models.

● Step 5: See the recently added model in the options of selecting a
model.

● Step 7: Model trains without error.
● Step 8: See the backtesting result associated with the custom model.

Steps 1. Log in with a valid account.
2. Create a model with random valid parameters.
3. Navigate to the “My Models” page.
4. Go back to the homepage and click on the “balance portfolio”

button of a portfolio.
5. Select the recently added custom models in model addition.
6. Fill in additional parameters such as risk threshold.
7. The recently added custom model is trained and inferred.

36

8. Backtesting results are given accordingly.

Date-Result 03.05.2025 - Passed.

Test ID 26 Category Functional Severity Major

Objective Verify that the user email verification works.

Expected Unverified users cannot log in directly and require verification. After the
verification, their accounts are activated.

Steps 1. Register a new user.
2. Try to log in to see the error message indicating the user is not

verified.
3. Using the link sent with the verification email, activate the

registered account.
4. Log in to see if the account is activated, and the user can see the

restricted pages.

Date-Result 30.04.2025 - Passed.

Test ID 27 Category Functional Severity Critical

Objective Verify that the system correctly handles datasets containing missing values
or invalid data entries during upload.

Expected If the custom dataset contains missing information, the system should warn
users that their data is impartial.

Steps 1. Upload a dataset with missing information.
2. Verify that the warning about the custom data appears.

Date-Result 30.04.2025 - Implementation not finished.

37

Test ID 28 Category Functional Severity Medium

Objective Verify that the users are notified when their portfolios need a new rebalance
operation.

Expected The system should send a notification when the investment horizon of the
portfolio has reached and rebalance is needed.

Steps 1. Train a model/models to optimize the portfolio.
2. Rebalance the portfolio accordingly, and note the investment

horizon.
3. Validate that the notification is sent when the investment horizon is

reached.

Date-Result 30.04.2025 - Implementation not finished.

Test ID 29 Category Functional Severity Medium

Objective Verify that users can compare different portfolios in the backtesting.

Expected The system should allow users to see different balanced portfolios side by
side and compare them.

Steps 1. Create 2 portfolios.
2. Balance them with the models available in the system.
3. Validate that after the training, the backtest results for the old

versions of those portfolios and the suggested versions of them can
be comparable simultaneously.

Date-Result 04.05.2025 - Passed.

38

Test ID 30 Category Functional Severity Critical

Objective Verify that the system doesn’t allow training with empty custom data or
empty portfolios.

Expected The system must prevent the initiation of model training when either the
portfolio data or custom data are empty. It should display the error message
“Cannot train the model: portfolio data is empty.” if the portfolio lacks
stocks or “Cannot train the model: custom data is empty.” if the custom data
is missing.

Steps 1. Log in as a user with sufficient compute units.
2. Create a new portfolio without adding any stocks.
3. Attempt to start model training with the empty portfolio.
4. Verify that the error “Cannot train the model: portfolio data is

empty.” is displayed.
5. Add valid stock data to the portfolio.
6. Attempt to start model training with an empty custom dataset.
7. Verify that the error “Cannot train the model: custom data is empty.”

is displayed.
8. Provide valid custom data and verify that training proceeds

successfully.

Date-Result 30.04.2025 - Passed.

Test ID 31 Category Functional Severity Critical

Objective Verify add model functionality.

Expected The created model must appear on the My Models page.

Steps 1. Navigate to the Add Model page.
2. Select a model and arrange the parameters.
3. After adding the model, validate that it appears on the My Models

page with the correct parameters.

39

Date-Result 30.04.2025 - Passed.

Test ID 32 Category Functional Severity Critical

Objective Verify update model functionality.

Expected The updated parameters must be stored and displayed on the My Models
page.

Steps 1. Navigate to the My Model page.
2. Select a model and click Edit.
3. Update the parameters of the model.
4. Click Save.
5. Verify that the parameters of the model are updated on the My

Models page.

Date-Result 30.04.2025 - Passed.

Test ID 33 Category Functional Severity Critical

Objective Verify delete model functionality.

Expected The deleted model must be unlisted from the My Models page.

Steps 1. Create a model if there is no one.
2. Navigate to the My Models page.
3. Select a model and click the Delete button.
4. Approve the delete operation.
5. Verify that the model is unlisted from the My Models page.

Date-Result 30.04.2025 - Passed.

40

Test ID 34 Category Functional Severity Critical

Objective Verify that the user can update their profile information.

Expected The updated information is saved and displayed correctly on the profile
page.

Steps 1. Log in and navigate to the "Profile" section.
2. Modify fields such as name, email, or contact details.
3. Click the "Save Changes" button.
4. Refresh the page and verify that the updated information is

displayed.

Date-Result 30.04.2025 - Passed.

Test ID 35 Category Functional Severity Critical

Objective Verify that the session times out after a period of inactivity.

Expected The system automatically logs out the user after the defined inactivity
period and prompts for re-login.

Steps 1. Log in and remain inactive for the preset timeout period.
2. Attempt to interact with the system after the timeout.
3. Confirm the system will redirect you to the login page with a

timeout message.

Date-Result 30.04.2025 - Passed.

Test ID 36 Category Functional Severity Critical

41

Objective Verify that user settings can be updated successfully.

Expected Changes in user settings are saved and correctly reflected on the settings
page.

Steps 1. Log in and navigate to "User Settings."
2. Modify settings such as notification preferences or display options.
3. Click "Save" and then refresh the page to verify changes.

Date-Result 30.04.2025 - Implementation not finished.

5.2. Non-Functional Test Cases

Test ID 37 Category Non-functional Severity Critical

Objective Verify that the training subsystem can handle multiple model training
without performance loss with respect to time.

Expected The system scales according to the number of training jobs, and the user
experience and time efficiency do not decrease dramatically.

Steps 1. From multiple profiles, train multiple models in each profile.
2. Measure the completion time of the jobs and compare them to the

completion time of the identical jobs that work in isolation.
3. Verify that no significant performance loss occurred in the system.

Date-Result 30.04.2025 - Passed.

Test ID 38 Category Non-functional Severity Critical

Objective Verify that the app functions properly on multiple browsers.

Expected The user interface does not differ much across browsers, and the

42

functionalities work as expected.

Steps 1. Log in to the application across mostly used browsers, such as
Chrome, Safari, and Firefox.

2. Try out the main functionalities of the application on different
browsers.

3. Validate that there is no problem with the interface or the
functionality.

Date-Result 30.04.2025 - Passed.

Test ID 39 Category Non-functional Severity Critical

Objective Verify that the portfolio optimization is completed within the estimated
timeframe.

Expected The optimized portfolio results are calculated within the estimated time
after the process is finished.

Steps 1. Start a training process to optimize the portfolio.
2. Note the reported expected time.
3. Measure the real-time to finish the training process.
4. Validate that the realized time is no more than the threshold (e.g.

). 1. 1 × 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒

Date-Result 03.05.2025 - Passed.

Test ID 40 Category Non-Functional Severity Major

Objective Verify that the system supports training requests more than the available
GPUs.

Expected ● Step 2: The system should accept training requests that exceed
available GPU clusters.

43

● Step 3,4: For each running job, the status should be either pending
or running.

Steps 1. From a client (e.g., using a curl command), query the training
scheduling service to retrieve the current resource status,
specifically the number of available GPUs.

2. Submit training requests equal to three times the number of existing
GPUs in the system.

3. Using Kubernetes (or the orchestration platform), check the status of
each training job submitted.

4. Verify that each job's status is either pending (queued for execution)
or running (actively using GPU resources).

5. Continuously monitor the status of the training jobs until all jobs
have either been completed or transitioned out of the pending state.

6. Validate that the system correctly manages the over-subscription of
GPU resources without causing failures or resource conflicts.

Date-Result 30.04.2025 - Passed.

Test ID 41 Category Security Severity Critical

Objective Verify that the system is resilient to the SQL injection attacks.

Expected If an ill-intended actor tries to inject SQL queries, the system should not
execute those queries.

Steps 1. Try all user input areas, such as editing profiles, creating portfolios,
etc.

2. Verify that SQL injection attacks are unsuccessful.

Date-Result 30.04.2025 - Passed.

Test ID 42 Category Non-function
al

Severity Medium

44

Objective Verify the scalability and stability of the backend under heavy concurrent
usage.

Expected The system should be able to handle many users using the website
concurrently.

Steps 1. Write a script that simulates various user’s behavior.
2. Run the script in large quantities in parallel.
3. Verify that the system works fine by performance monitoring.

Date-Result 30.04.2025 - Failed.

Test ID 43 Category Non-functional Severity Medium

Objective Verify that the market data update time doesn’t introduce any inconsistency
in rebalancing and backtesting.

Expected The system should use the updated data available only after the update
process.

Steps 1. Before the market data update time, run backtesting and portfolio
optimization tasks.

2. During market data update time, run backtesting and portfolio
optimization tasks and validate that results are the same and correct.

3. After the market data update time, run backtesting and portfolio
optimization tasks to validate that the results are updated with the
new market data.

Date-Result 30.04.2025 - Passed.

Test ID 44 Category Non-functional Severity Critical

Objective Verify the system is resilient against brute force attacks for stealing

45

passwords and accounts.

Expected The system should prevent brute force attacks by presenting a cooldown or
email verification.

Steps 1. Register a user account and verify it.
2. Log out from that user account.
3. Try the wrong passwords multiple times.
4. Validate that the system blocks this brute force approach after the

threshold times attempts.

Date-Result 30.04.2025 - Passed.

Test ID 45 Category Non-function
al

Severity Critical

Objective Verify that the compute unit estimation system works accurately within an
error rate.

Expected The system should be able to estimate the computing cost of training
beforehand within a decided error range.

Steps 1. Create different training tasks with different combinations.
2. Compare the estimated computing unit usage and realized

computing unit usage.
3. Verify that the difference is within the reasonable error range.

Date-Result 30.04.2025 - Will not be implemented.

Test ID 46 Category Non-functional Severity Critical

Objective Verify that the system updates historical market data accordingly during
stock splits.

46

Expected The historical stock prices and calculated values must be adjusted according
to the stock split.

Steps 1. Upload test data, including stock split.
2. Validate the handling of the stock split via portfolio optimizations

and backtesting results.

Date-Result 30.04.2025 - Failed.

Test ID 47 Category Non-functional Severity Critical

Objective Verify that the system maintains market data integrity during market data
updates.

Expected The system should be resilient to crashes during market data updates. If a
crash occurs, the system must detect missing or incomplete data and
automatically resume the update process.

Steps 1. Prepare a historical market dataset with the last week’s data
intentionally removed.

2. Start the market data update process.
3. Inject simulated accurate data for each missing day of the last week

sequentially.
4. Intentionally crash the application during the update process.
5. Restart the application.
6. Verify that the system automatically detects the missing data and

resumes the update process to complete the dataset.

Date-Result 30.04.2025 - Passed.

Test ID 48 Category Non-functional Severity Critical

Objective Verify that multiple concurrent logins from different devices are handled
correctly.

47

Expected The system allows concurrent logins while maintaining session integrity
and data consistency.

Steps 1. Log in on one device with valid credentials.
2. Log in on a second device using the same account.
3. Verify that both sessions remain active and data is synchronized

between devices.

Date-Result 30.04.2025 - Passed.

Test ID 49 Category Non-functional Severity Critical

Objective Verify that file uploads respect the maximum size limit.

Expected The system rejects files that exceed the specified size limit with an
appropriate error message.

Steps 1. Navigate to the "Balance Portfolio” section as a Technical User.
2. During the training steps, choose to upload a custom dataset.
3. Select a file larger than the allowed limit.
4. Click "Upload" and observe the error message.

Date-Result 30.04.2025 - Passed.

Test ID 50 Category Security Severity Critical

Objective Verify that sensitive data is encrypted in storage.

Expected Data such as passwords and personal information are stored in an encrypted
format.

Steps 1. Create or update a user account with sensitive data.
2. Access the backend storage (using a secure tool or test interface).

48

3. Confirm that sensitive fields are not stored in plain text.

Date-Result 30.04.2025 - Passed.

6. Maintenance Plan and Details
For our Para-Meter project, we currently do not plan to maintain the application for public
use. This decision is mainly because of our limited financial resources and time constraints as
students. While we created a working application with many features, we acknowledge that a
financial application requires ongoing support and updates to be useful for real users.

We have several parts of the application that we could not fully implement due to our project
timeline. These include some advanced machine learning models and additional portfolio
optimization strategies that we planned in our initial design. We might complete these
features in the future.

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering
Design

This chapter details the key constraints that have influenced our design decisions and outlines
the standards we follow to ensure a robust, secure, and high-quality system.

7.1.1. Constraints

7.1.1.1. Implementation Constraints
● Accessing reliable and high-quality financial data is important for accurate modeling

and optimization. However, many financial APIs have rate limits or limited historical
data. Also, the data might be inaccurate or incomplete. These might hinder the
accuracy of the results.

● Training machine learning models and running optimization algorithms require
significant computational resources, including processing power and memory. The
lack of access to high-performance hardware, such as GPUs or distributed computing
systems, can slow down model training and testing, particularly when working with
large datasets or performing hyperparameter tuning.

● The limited development timeline of 8 months can restrict the scope of development
and testing. This limited duration requires careful prioritization of features and
functionalities to ensure the delivery of a functional, high-quality system within the
allotted time.

49

7.1.1.2. Financial Constraints
● The development of a machine learning-based portfolio optimization tool faces

significant financial limitations. The initial budget for the project restricts access to
advanced cloud infrastructure and premium financial datasets. Cloud services, which
are essential for computation and storage, incur substantial costs, especially when
utilizing high-performance configurations like GPUs or distributed systems. Similarly,
high-quality financial datasets, often critical for accurate modeling, can be expensive
and may exceed budgetary limits. These constraints could affect the accuracy and
speed of the system’s development.

● Operational costs are another concern, as the platform aims to remain affordable for
retail investors who are sensitive to pricing. Maintaining low operational expenses is
important to ensure the tool is accessible, which may necessitate adopting a freemium
or tiered pricing model. Cost-effective development practices, such as using
open-source tools and optimizing resource usage, will be critical to staying within
budget.

7.1.1.3. Ethical Constraints
● A primary ethical concern is user data privacy. Compliance with data protection

regulations such as GDPR (General Data Protection Regulation), CCPA (California
Consumer Privacy Act), and KVKK (Personal Data Protection Law) is crucial since
the tool handles sensitive financial and personal information.

● Avoiding algorithmic bias is one of the most important ethical constraints for
Para-Meter. Machine learning models trained on financial data may unintentionally
favor certain asset classes, industries, or demographic groups, leading to biased
recommendations. Ensuring fairness in portfolio suggestions requires diverse,
high-quality training datasets, which can be hard to detect and obtain.

7.1.1.4. Public Health, Safety, and Welfare Factors
● Impact Level: 3/10

Although the system does not have a direct impact on public health and safety, it does
contribute to broader welfare by empowering users to make informed financial
decisions.

● Financial Well-being: By enabling users to optimize their investment portfolios and
better manage risk, the system indirectly contributes to the financial well-being of
individuals. As people become more informed and make smarter investment choices,
their overall financial security could improve, supporting their long-term welfare.

● Accessibility to Financial Tools: By providing a user-friendly and affordable tool,
the system helps democratize access to financial optimization tools that were
previously only available to institutional investors. This can improve the financial
outcomes of individuals who might otherwise not have had access to advanced
investment strategies.

50

7.1.1.5. Global and Cultural Factors
● Impact Level: 4/10

Global and cultural factors play an important role in shaping how the system is used
across different regions and by diverse groups of investors.

● Market Accessibility: The system will focus on ensuring seamless access to the most
widely traded stocks across different regions. It must consider any regional
restrictions, such as access to foreign markets, to allow investors from any region to
build diversified portfolios without being limited to local stocks.

7.1.1.6. Economic Factors
● Impact Level: 10/10

The system must account for various economic considerations to ensure it is
accessible, efficient, and sustainable in the long term.

● Affordability for Retail Investors: The platform must remain affordable,
particularly for retail investors, who are typically sensitive to costs. This necessitates a
pricing model that balances feature availability with affordability. A freemium or
tiered pricing model would allow users to access essential functionalities while
offering premium features for more advanced users or institutional clients.

● Operational Costs and Cloud Infrastructure: High-performance cloud computing
and financial data APIs are crucial for training machine learning models and
executing real-time optimization. However, using advanced cloud infrastructure such
as GPUs, distributed computing systems, and premium data sources can significantly
increase costs. The system must find a cost-effective solution that balances
computational needs with budgetary constraints.

● Economic Sensitivity of Market Conditions: The platform must adjust its models to
reflect changing economic conditions, such as market volatility, interest rates, and
inflation. These economic factors can impact the performance of investment
portfolios and must be integrated into the system's predictive models to ensure that
portfolio optimizations remain relevant under different economic climates.

 Effect level Effect

Public health 0 N/A - The project has no direct impact
on public health.

Public safety 0 N/A - The project has no direct impact
on public safety.

51

Public welfare 3 The project indirectly contributes to
financial well-being by helping users

optimize their investments.

Global Factors 4 The project ensures accessibility to
global markets and compliance with

international regulations.

Cultural factors 0 N/A - The project has no direct impact
on cultural factors.

Social factors 5 The project democratizes access to
advanced investment tools, fostering

inclusivity and financial literacy.

Environmental factors 1 Minimal impact due to hosting
infrastructure and cloud service usage.

Economic factors 10 The project heavily focuses on
economic considerations, especially

affordability for retail investors.

Table 1. Factors that can affect analysis and design.

7.1.2. Standards

To ensure that Para-Meter is developed with best practices and meets appropriate
requirements, we followed several recognized standards where applicable to our project
scope:

IEEE 830: This standard provides guidance for writing clear requirements specifications. We
used it as a reference when documenting our functional and non-functional requirements,
though we adapted it to fit our project's scale.

UML 2.5.1: We used elements of the Unified Modeling Language (UML) to create diagrams
that helped us design our system. This included basic use-case diagrams and class diagrams
that guided our implementation.

52

JWT Authentication: Instead of implementing the full OAuth 2.0 protocol, we used JSON
Web Tokens (JWT) for authentication, which was more appropriate for our project scope.
This provided us with secure, stateless authentication while being simpler to implement.

Basic Security Practices: While we didn't implement a complete ISO/IEC 27001
information security management system, we followed basic security practices, including:

● Password hashing using BCrypt
● HTTPS for data transmission
● Input validation to prevent common attacks
● Proper authorization checks for API endpoints

Password Security: We followed key recommendations from NIST SP 800-63B regarding
password storage:

● Passwords are hashed using the BCrypt algorithm
● We implemented minimum password strength requirements
● We don't store passwords in plain text

Data Privacy Considerations: While our project doesn't currently have plans for public
deployment requiring full GDPR compliance, we designed our data handling with privacy in
mind:

● We only collect necessary user information
● Personal data is stored securely
● We implemented user data access controls

As a student project, our implementation of these standards was focused on learning and
applying key principles rather than achieving formal certification or complete compliance. If
Para-Meter were to be developed for production use in the future, a more comprehensive
implementation of these standards would be necessary.

7.2. Ethics and Professional Responsibilities
This section discusses the ethical and professional responsibilities we acquired during this
project.

7.2.1. Ethical Responsibilities
Terms and Conditions: Due to the nature of our project, we deal with financial data. So,
there is always a risk of losing or gaining money if the users take our application’s
suggestion. We inform the users about this risk, and they have to accept these terms and take
responsibility for their financial decisions.

Ensuring Custom Dataset Privacy: We provide users the flexibility of uploading their own
datasets. We do not use their dataset for our own models or other users’ models. The dataset

53

will be stored during the training, and it will be deleted and not held for future use to ensure
that the users ' data is not used for other purposes.

Transparency: One of the main goals of Para-Meter was to create a more transparent
application than the ones already successful in the market. The issue with already existing
solutions is that they are not transparent in terms of what happens on the backend while
optimizing a portfolio. This decreases trust in those who are not tech-savvy. So, we kept that
in mind while implementing our application.

7.2.2. Professional Responsibilities
Throughout this project, we upheld several key professional responsibilities:

Technical Accuracy and Transparency: We ensured that our financial prediction models
were built with statistical transparency. All assumptions, limitations, and performance metrics
are clearly documented to prevent misrepresentation of the system's capabilities.

Continuous Learning and Improvement: We maintained a commitment to staying current
with best practices in financial modeling and machine learning. This included regular review
of relevant literature and incorporating feedback during the development.

Quality Assurance and Testing: We tested all the features we implemented to validate our
models and application functionality.

Documentation and Knowledge Transfer: We created comprehensive documentation to
facilitate future maintenance and development of the system, ensuring sustainability beyond
our direct involvement.1

7.3. Teamwork Details
This section describes the teamwork approach during the project, outlining how each member
contributed to the project, fostered a collaborative and inclusive work environment, and took
lead roles in different parts of the project.

7.3.1. Contributing and functioning effectively on the team to
establish goals, plan tasks, and meet objectives

Each team member played a vital role in ensuring that the project advanced efficiently and
effectively:

● Tuna Saygın
He took charge of the ML module and contributed to the overall architectural design.
His contributions were central to integrating machine learning components with the
rest of the system. His role ensured that the architecture remained modular and
scalable, supporting the project’s advanced functionalities. Additionally, he

54

implemented some components on the frontend and helped with the frontend-backend
integration.

● Sıla Özel:
She was responsible for designing and implementing a user-friendly frontend. She
focused on ensuring that the interface was both efficient and accessible, contributing
to a seamless user experience. Her dedication to UI/UX design ensured that the
system remained intuitive, which is critical for the target users. She also took the lead
for frontend-backend integration.

● Abdullah Samed Uslu
He managed the JIRA system to track tasks and deadlines, ensuring that all project
activities were clearly documented and scheduled. In addition, he contributed
significantly to portfolio optimization techniques and managed the financial data
aspect of the system. This contribution helped shape the core analytical functions and
maintain a structured approach to data management.

● Muti Kara:
He handled the backend development, including communication protocols and
database management. He created the backbone of the backend system in terms of
both high-level architecture and code. His work ensured that data flowed smoothly
between the system components and that backend services were efficient and robust.
His contributions to backend systems were key in maintaining system performance
and reliability.

Overall, each member not only focused on their specific areas of responsibility but also
collaborated across disciplines, providing support and insights that enriched the overall
quality of the project.

7.3.2. Helping create a collaborative and inclusive environment

Our team prioritized creating an open, collaborative, and inclusive environment through
several key practices:

● Weekly Meetings:
We held regular weekly meetings to discuss progress, address challenges, and plan
upcoming tasks. These meetings provided a dedicated space for every team member
to share updates, ask questions, and contribute ideas. They were essential for keeping
everyone aligned and ensuring transparency across all aspects of the project.

● Open Communication:
In addition to weekly meetings, we maintained open communication channels through
messaging apps. This constant dialogue helped resolve issues quickly and fostered a
sense of camaraderie among team members.

55

● Mutual Support and Peer Learning:
Each member willingly shared their expertise and assisted colleagues when needed.
For example, when technical challenges emerged in the frontend or backend, team
members collaboratively discussed solutions and exchanged knowledge. This peer
learning approach enhanced our collective skills and improved project outcomes.

● Inclusive Decision-Making:
Major decisions, such as tool selection, system architecture, and project milestones,
were discussed openly with input from all members. This inclusive process ensured
that diverse perspectives were considered, resulting in well-rounded and effective
solutions.

7.3.3. Taking a lead role and sharing leadership on the team

Leadership within our team was shared based on individual strengths, allowing everyone to
take charge of their respective areas while supporting each other:

● Tuna Saygın:
He took the lead in the ML module and architectural design efforts. His initiative in
organizing discussions around system scalability and modularity helped ensure that
our ML components were seamlessly integrated and future-proofed.

● Sıla Özel:
She led the front-end development, guiding design choices and implementation
strategies to ensure an intuitive user experience. Her proactive approach to UI/UX
reviews significantly shaped our user interface.

● Abdullah Samed Uslu:
He frequently led discussions on task management and portfolio optimization, setting
clear objectives and ensuring smooth progress through effective JIRA management.

● Muti Kara:
He led backend development, coordinating efforts to establish robust communication
protocols and manage database operations. His leadership was pivotal in integrating
backend components with the overall system.

In every instance, leadership was not confined to one person but was a shared responsibility.
Each member stepped up to lead in their domain while actively participating in group
decisions, contributing to a sense of collective ownership, and ensuring the success of the
project.

7.3.4. Meeting objectives
This subsection compares the goals defined in the Analysis Report (Work Packages 1–8)
with the actual outcomes at project completion on May 2, 2025.

WP Objective Planned
Deadline

Finish
Time

Status Notes

56

1
Creating a scalable and
modular system design
while adhering to
engineering standards.

10.02.2025
12.02.2025 Met. We designed and

created UML
diagrams,
high-level
architecture
sketches, and
sequence diagrams
for a scalable
backend.

2
Setting up the data
pipeline and ensuring
clean, accurate, and
reliable input for ML
models.

15.02.2025 14.02.2025 Met. We successfully
utilized external
APIs such as
Yahoo Finance and
applied imputing
techniques for
missing data.

3
Training and validating
machine learning models
for portfolio
optimization.

31.03.2025 14.04.2025 Partially
Met.

While we can train
machine learning
models on custom
data, we still get
high loss values on
real stock market
data.

4
Understanding and
implementing financial
mathematical models
such as risk-return
optimization, Value at
Risk (VaR), Sharpe ratio
calculations, and
portfolio rebalancing
strategies, ensuring
alignment with modern
financial theories..

15.03.2025
30.04.2025 Partially

Met.
We are supporting
only a limited
number of models,
which are
Markowitz and
Black Litterman.

5
Developing an intuitive
and accessible interface
for users.

28.02.2025 24.02.2025 Met. We developed an
intuitive UI with
all of the main
pages included.
The development
of core
components of the
front-end had
finished by the due
date.

57

6
Implementing backend
services and APIs for
seamless data and model
handling.

31.03.2025 25.03.2025 Met. The backend
systems for auth
management and
basic CRUD of
stocks and
portfolios have
been completed.
The backbone for
training and
inferencing AI
models and
backtesting
utilities had been
implemented by
the due date.

7
Integrating system
modules and ensuring
seamless operation
through comprehensive
testing.

01.05.2025 30.04.2025 Partially
Met.

In the end, we
managed to merge
the frontend and
backend, but there
wasn't enough
time for us to test
comprehensively.

8
Creating comprehensive
documentation and
presenting the project.

01.05.2025 02.05.2025 Met. We have
completed this
report and
prepared our
application for the
demo presentation.

7.4 New Knowledge Acquired and Applied
Throughout the Para-Meter project, our team learned many new skills and gained valuable
knowledge in different areas. This learning process was an important part of our project, and
we used several strategies to gain and apply new knowledge.

Technical Knowledge Gained
Before starting this project, most of us had only basic experience with web development.
During the project, we learned:

● FastAPI Framework: Most of us haven't used FastAPI before. We learned how to
create RESTful APIs with automatic documentation and how to use its async features
for better performance.

● React Development: We improved our React skills, especially with hooks and
context API. We learned how to create reusable components and manage the state
effectively.

● TimescaleDB: We had no significant experience with time-series databases before.
We learned how to design database schemas for financial data and how to optimize
queries for time-series data.

58

● Docker and Containerization: We learned how to containerize our application using
Docker, which helped us maintain consistent environments across our team.

● Authentication with JWT: We learned how to implement secure token-based
authentication and how to protect API endpoints.

Financial Knowledge Gained
Most of us started with limited knowledge about portfolio optimization and financial
algorithms:

● Portfolio Theory: We learned about Modern Portfolio Theory, efficient frontiers, and
how to balance risk and return.

● Optimization Algorithms: We studied different methods for portfolio optimization,
like Mean-Variance Optimization and Black Litterman.

● Financial Data Analysis: We learned techniques for analyzing financial time-series
data and how to calculate important metrics.

Learning Strategies
To gain these new skills and knowledge, we used several learning strategies:

● Pair Programming: We often worked in pairs, which helped us share knowledge
quickly. When one person knew something the other didn't, they could teach it
directly.

● Weekly Knowledge Sharing: We had weekly meetings where team members would
present what they learned about specific topics to the rest of the team.

● Books and Articles:
○ Modern Portfolio Theory and Investment Analysis: Used to develop

portfolio optimization models.
○ Machine Learning and Data Science: Used to develop machine learning

models.
○ Mathematics for Finance: An Introduction to Financial Engineering:

Used to develop portfolio optimization models.
● University Courses: Our group members took some courses to apply their outcomes

to our project:
○ CS464 - Introduction to Machine Learning: Helped to understand the basics

of machine learning.
○ IE440 - Introduction to Financial Engineering: Helped to understand the

basics of portfolio optimization.
● Expert Opinions: We had a meeting with Prof. Hüseyin Çağrı Sağlam, who is an

economics professor at Bilkent University. He gave us advice on financial markets
and what our target users might expect from us. Since we target people who know
about finance but don't know about coding, his comments on user expectations were
quite insightful. He also recommended a few economics books, which contributed to
our sources. Humorously, he also suggested that we should forget about the stock
market and pivot our app to betting on the Trabzonspor Football Club.

Application of Knowledge

59

We applied our new knowledge directly to the project:
● Backend: We used our FastAPI knowledge to create efficient API endpoints that

handle financial data processing and user authentication.
● Frontend: We applied our React knowledge to build an interactive frontend with

reusable components and proper state management.
● Portfolio Optimization: Our financial knowledge helped us implement accurate

portfolio optimization algorithms and properly visualize portfolio performance.
● Data Management: We used our TimescaleDB knowledge to design a database

schema that efficiently stores and queries time-series stock price data.
● Machine Learning: One of our biggest learning challenges was creating the

predictive engine for our application. We started with simple linear regression as a
baseline to predict asset returns. As we learned more, we moved to more complex
models:

○ We implemented multi-layer perceptrons (MLPs) with techniques like batch
normalization and dropout to prevent overfitting

○ We built recurrent neural networks (RNNs) to better capture patterns in stock
price time series

○ We experimented with ensemble methods like random forests and
gradient-boosted trees to make our predictions more robust against market
noise

○ We designed our code to allow easy swapping of algorithms and automatic
hyperparameter tuning

This project pushed us to learn many new skills quickly and apply them to solve real
problems. The knowledge we gained will be valuable for our future careers, especially in
fintech or web development. Even though we don't plan to maintain Para-Meter for public
use right now, the experience of building it taught us how to learn and apply new
technologies effectively.

8. Conclusion and Future Work

8.1 Project Summary
Our Para-Meter portfolio optimization platform successfully meets the main goals we set at
the beginning of the project. We created a web application that helps both technical and
non-technical users optimize their investment portfolios using machine learning algorithms.
The system allows users to create portfolios, select stocks, implement optimization strategies,
and visualize performance.

We successfully implemented key features, including:

● User authentication and account management
● Portfolio creation and management
● Stock data retrieval and storage

60

● Multiple portfolio optimization algorithms
● Machine learning prediction models
● Backtesting capabilities
● Different interfaces for technical and non-technical users

The application uses modern technologies like FastAPI for the backend, React for the
frontend, and TimescaleDB for storing financial data. We designed the system to be modular
and flexible, which made it easier for our team to work on different parts at the same time.

8.2 Lessons Learned
During this project, we learned many valuable lessons about software development and
teamwork:

Planning is important: Having a clear architecture design from the beginning helped us
avoid major changes later in the project.

Start simple, then add complexity: Beginning with simple steps before adding more
complex features helped us make steady progress. Also, instead of directly designing the
complete project, an iterative approach enables us to see problems and errors in our designs
on the go.

Regular communication is key: Our weekly meetings and daily check-ins helped us identify
and solve problems quickly.

Learning new technologies takes time: We sometimes underestimate how long it would
take to learn new technologies and concepts.

Financial domain knowledge matters: Understanding the financial concepts behind our
algorithms was just as important as coding skills.

8.3 Future Work
While we're not planning to maintain Para-Meter for public use right now, we identified
several areas for potential future improvement:

Additional Optimization Strategies: We could add more portfolio optimization methods
like Risk-Parity and Factor-Based optimization.

Advanced Machine Learning Models: We started implementing some advanced ML
models, but there's room to add more sophisticated approaches like transformers or
reinforcement learning for portfolio management.

Real-Time Data: Currently, our system uses end-of-day stock data. Adding real-time data
would make it more useful for active traders.

61

Performance Improvements: The portfolio optimization algorithms could be made faster,
especially for portfolios with many stocks.

If we decide to continue this project in the future, these enhancements would be valuable
additions to Para-Meter. However, even in its current state, the project demonstrates a
functional portfolio optimization platform and represents the significant knowledge and skills
we gained throughout its development.

62

9. Glossary
RNN: A recurrent neural network that processes sequences by maintaining and updating a
hidden state to capture temporal dependencies in data.

Multi-Layer Perceptron (MLP): A feed-forward neural network composed of multiple fully
connected layers that learns complex, non-linear mappings between inputs and outputs.

Linear Regression: A statistical method that models the relationship between a dependent
variable and one or more independent variables by fitting a linear equation to observed data.

Ensemble Methods: Techniques that combine predictions from multiple models, such as
bagging, boosting, or stacking, to improve overall accuracy and robustness.

Machine Learning (ML): A subset of artificial intelligence that enables systems to learn
from data

Portfolio Optimization: The process of selecting the optimal allocation of assets in a
portfolio

Mean-Variance Optimization (MVO): A mathematical framework for assembling a
portfolio of assets

FastAPI: A modern, fast web framework for building APIs with Python

React: A JavaScript library for building user interfaces

TimescaleDB: A time-series database built on PostgreSQL

63

10. References
[1] "Yahoo Finance API Documentation," Yahoo Finance. [Online]. Available:
https://finance.yahoo.com/. [Accessed: Apr. 12, 2025].

[2] "FastAPI," FastAPI. [Online]. Available: https://fastapi.tiangolo.com/. [Accessed: Apr.
25, 2025].

[3] "Tortoise-ORM," Tortoise-ORM. [Online]. Available: https://tortoise-orm.readthedocs.io/.
[Accessed: Apr. 10, 2025].

[4] H. Markowitz, "Portfolio Selection," The Journal of Finance, vol. 7, no. 1, pp. 77-91, Mar.
1952.

[5] F. Black and R. Litterman, "Global Portfolio Optimization," Financial Analysts Journal,
vol. 48, no. 5, pp. 28-43, Sep. 1992.

64

	
	1. Introduction
	1.1. Purpose of the System
	1.2. Design Goals
	1.3. Definitions, Acronyms, and Abbreviations
	1.4. Overview

	2. Requirements Details
	2.1. Functional Requirements
	2.2. Non-Functional Requirements

	3. Final Architecture and Design Details
	3.1. System Architecture
	3.1.1. High-Level Architecture
	3.1.2 Monolithic Architecture
	3.1.3 Component Interactions
	3.1.4 Technology Stack Overview
	3.1.5 Authentication System

	3.2. Backend Design
	3.2.1 API Design and RESTful Endpoints
	3.2.2 Asynchronous Processing Model
	3.2.3 Module Organization and Structure

	3.3 Frontend Design
	3.3.1. Component Hierarchy
	3.3.2. State Management Approach

	3.4. Architecture Diagrams
	3.4.1. Subsystem Decomposition Diagram
	3.4.2. Use Case Diagram

	
	4. Development/Implementation Details
	4.1. Development Methodology
	4.1.1. Development Tools
	4.1.2. Development Workflow

	4.2. Backend Implementation
	4.2.1. FastAPI Application Implementation
	4.2.2. Database Implementation
	4.2.3. Authentication Implementation
	4.2.4. Financial Data Processing
	4.2.5 Machine Learning Models
	4.2.6. Error Handling and Logging

	4.3. Frontend Implementation
	4.3.1. React Application Setup
	4.3.2. Component Implementation
	4.3.3. State Management Implementation
	4.3.4. Chart and Data Visualization Implementation
	4.3.5. Form Handling Implementation
	4.3.6. Authentication Implementation

	5. Test Cases and Results
	
	5.1. Functional Test Cases
	5.2. Non-Functional Test Cases

	6. Maintenance Plan and Details
	7. Other Project Elements
	7.1. Consideration of Various Factors in Engineering Design
	7.1.1. Constraints
	7.1.1.1. Implementation Constraints
	7.1.1.2. Financial Constraints
	7.1.1.3. Ethical Constraints
	7.1.1.4. Public Health, Safety, and Welfare Factors
	7.1.1.5. Global and Cultural Factors
	7.1.1.6. Economic Factors

	7.1.2. Standards
	7.2. Ethics and Professional Responsibilities
	7.2.1. Ethical Responsibilities
	7.2.2. Professional Responsibilities

	7.3. Teamwork Details
	7.3.1. Contributing and functioning effectively on the team to establish goals, plan tasks, and meet objectives
	7.3.2. Helping create a collaborative and inclusive environment
	7.3.3. Taking a lead role and sharing leadership on the team
	7.3.4. Meeting objectives

	7.4 New Knowledge Acquired and Applied

	8. Conclusion and Future Work
	8.1 Project Summary
	8.2 Lessons Learned
	8.3 Future Work

	
	9. Glossary
	
	10. References

